留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空域划分的超视距空战态势威胁评估

肖亮 黄俊 徐钟书

肖亮, 黄俊, 徐钟书等 . 基于空域划分的超视距空战态势威胁评估[J]. 北京航空航天大学学报, 2013, 39(10): 1309-1313.
引用本文: 肖亮, 黄俊, 徐钟书等 . 基于空域划分的超视距空战态势威胁评估[J]. 北京航空航天大学学报, 2013, 39(10): 1309-1313.
Xiao Liang, Huang Jun, Xu Zhongshuet al. Modeling air combat situation assessment based on combat area division[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1309-1313. (in Chinese)
Citation: Xiao Liang, Huang Jun, Xu Zhongshuet al. Modeling air combat situation assessment based on combat area division[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1309-1313. (in Chinese)

基于空域划分的超视距空战态势威胁评估

基金项目: 装备预先研究计划项目(51310010504)
详细信息
    作者简介:

    肖亮(1983-),男,辽宁沈阳人,博士生,vin.x@qq.com.

  • 中图分类号: V271.4

Modeling air combat situation assessment based on combat area division

  • 摘要: 编队超视距空战(BVR,Beyond Visual Range)已成为现代空战的主要模式.在空战优势区域与劣势区域判断的基础上对整个空域进行划分,并给出4种特定空域态势.从空中态势和编队作战能力两方面对空战态势进行分析.使用主成分分析法选取输入变量分析编队作战能力,降低评估过程中收集数据的复杂度.应用遗传神经网络对影响BVR各因素进行效能评估,将遗传算法(GA,Genetic Algorithms)与多层前馈(BP,Back Propagation)网络结合,利用GA的全局搜索优化BP网络的结构参数,有效克服BP算法的局部收敛等问题.结果表明:该模型能在综合分析空战各指标后给出红蓝双发的态势评估指标,该模型可有效减少评估中的人为因素,使评估结果更为客观可信.

     

  • [1] Sivazlian B D.Aircraft sortie effectiveness model[R].AD-A211594,1989 [2] 康崇禄.国防系统分析方法[M].北京:国防工业出版社,2003:442-467 Kang Chonglu.Method ofnational system analysis[M].Beijing: National Defence Industry Press,2003:442-467(in Chinese) [3] 曲东才.超视距空空导弹与超视距空战[J].中国航天,1999(8):23-27 Qu Dongcai.BVR air-to-air missile and BVR air combat[J].Aerospace China,1999(8):23-27(in Chinese) [4] Tom Ring.US airborne command and control system [J].World Air Power,1999(36):40-57 [5] Paddon H G.Maneuvering target simulation for testing the terminal guidance of air-to-air missiles .ADA039757/OSL,1977 [6] Austin F,Lewis M.Automated maneuvering decision for air-to-air combat [R].AIAA-87-2393,1987 [7] Hague D S.Multiple-tactical aircraft combat performance evaluation system [R].AIAA-80-0189,1980 [8] Coleman N,Papanagopoulos G.Advanced mine-to-target assignment algorithms and simulation [R].AIAA-99-3993,1999 [9] Geng Yanluo,Jiang Changsheng,Li Weihao.Multi-fighter coord inated multi-target attack system [J].Transact ions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23 [10] 李林森,佟明安.协同多目标攻击空战决策及其神经网络实现[J].航空学报,1999,20(4):309-312 Li Linsen,Tong Ming an.Air combat decision of cooperative multi-target attack and its neural net realization[J].Acta Aeronautica et Astronautica Sinica,1999,20(4):309-312(in Chinese) [11] Phua P K H,Zhu X T,Koh C H.Forecasting stock index increments using neural networks with trust region methods[C]//Proceedings of the International Joint Conference on Neural Networks.Singapore:IEEE,2003:260-265 [12] 范睿,李国斌,景韶光.基于实数编码遗传算法的混合神经网络算法[J].计算机仿真,2006,23(1):161-164 Fan Rui,Li Guobin,Jing Shaoguang.A method of mixed neural network based on real-coded genetic algorithm[J].Computer Simulation,2006,23(1):161-164(in Chinese) [13] 张最良,李长生,赵文志,等.军事运筹学[M].北京:军事科学出版社,1993:109-123 Zhang Zuiliang,Li Changsheng,Zhao Wenzhi,et al.Military operational research[M].Beijing:Military Science Press,1993:109-123(in Chinese) [14] 朱宝鎏,朱荣昌,熊笑非.作战飞机效能评估[M].北京:航空工业出版社,1993:64-91 Zhu Baoliu,Zhu Rongchang,Xiong Xiaofei.Military aircraft combat effectiveness assessment [M].Beijing:Aeronautics Industry Press,1993:64-91(in Chinese) [15] 姬春煦,张骏.基于主成分分析的股票指数预测研究[J].计算机工程与科学,2006,28(8):122-124 Ji Chunxu,Zhang Jun.Stock forecasting based on principal component analysis[J].Computer Engineering and Science,2006,28(8):122-124(in Chinese) [16] 姜长生,丁全心,王建刚,等.多机协同空战中的威胁评估与目标分配[J].火力与指挥控制,2008,33(11):8-13 Jiang Changsheng,Ding Quanxin,Wang Jiangang,et al.Research on threat assessment and target distribution for multi-aircraft cooperative air combat[J].Fire Control and Command Control,2008,33(11):8-13(in Chinese)
  • 加载中
计量
  • 文章访问数:  1720
  • HTML全文浏览量:  204
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 网络出版日期:  2013-10-30

目录

    /

    返回文章
    返回
    常见问答