SPM based on normalized cut for image classification
-
摘要: 对大型图像数据库进行图像分类是很困难的,空间金字塔算法针对这种问题提出,并能得到很好的分类精度,但有几点不足.针对这些不足,提出基于规范割的空间金字塔算法:使用规范割算法对特征词进行更准确的聚类;对每类训练图像计算子特征库,利用二次聚类生成总特征库,在特征字典中保留更多的稀疏类型图像特征词;用高斯模型量化未知特征生成特征直方图,并对直方图进行尺度重整,提高类间距.实验证明提出算法比原方法分类精度最多能提高4.6%.Abstract: It is difficult to classify scene images with high accuracy when the dataset is relatively large. Spatial pyramid matching was proposed to deal with this problem, but there are some shortages. As an improvement, the algorithm based on normalized cut was proposed. Normalized cut was utilized instead of K-means for clustering. The size of codebook was regulated referring to quantity and size of the images, by calculating sub-codebook for every category and re-clustering the codes. Distance between categories was enlarged by quantifying unknown features with Gaussian model and rescaling the histogram features. Experiments prove that new approach can get higher precision than the original by 4.6% at most.
-
Key words:
- data clustering /
- image classification /
- normalized cut /
- support vector machine
-
[1] Lowe D.Object recognition from local scale-invariant features[C]//Proceedings of International Conference on Computer Vision.Kerkyra:IEEE Computer Society Press,1999:1150-1157 [2] Li Feifei,Perona P.A Bayesian hierarchical model for learning natural scene categories[C]//Proceedings IEEE Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:524-531 [3] Grauman K,Darrell T.Efficient image matching with distributions of local invariant features[C]//Proceedings IEEE Computer Vision and Pattern Recognition.San Diego:IEEE Computer Society Press,2005:627-634 [4] Zhang Hao,Berg A,Maire M,et al.SVM-KNN:discriminative nearest neighbor classification for visual category recognition[C]//Proceedings IEEE Computer Vision and Pattern Recognition.New York:IEEE Computer Society Press,2006:2126-2136 [5] Lazebnik S,Schmid C,Ponce J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]//Proceedings IEEE Computer Vision and Pattern Recognition.New York:IEEE Computer Society Press,2006:2169-2178 [6] Bosch A,Zisserman A.Representing shape with a spatial pyramid kernel[C]// International Conference on Image and Video Retrieval.Amesterdan:Association for Computing Machinery,2007:401-408 [7] 张琳波,王春恒,肖柏华,等.基于Bag-of-phrases的图像表示方法[J].自动化学报,2012,38(1):46-54 Zhang Linbo,Wang Chunheng,Xiao Baihua,et al.Image representation using bag-of-phrases[J].Acta Automatica Sinica,2012,38(1):46-54 (in Chinese) [8] 赵春晖,王莹,Kaneko Masahide.一种基于词袋模型的图像优化分类方法[J].电子与信息学报,2012,34(9):2064-2070 Zhao Chunhui,Wang Ying,Kaneko Masahide.An optimized method for image classification based on bag of words model[J].Journal of Electronics & Information Technology,2012,34(9):2064-2070 (in Chinese) [9] 袁莹,邵健,吴飞,等.结合组稀疏效应和多核学习的图像标注[J].软件学报,2012,23(9):2500-2509 Yuan Ying,Shao Jian,Wu Fei,et al.Image annotation by the multiple kernel learning with group sparsity effect[J].Journal of Software,2012,23(9):2500-2509(in Chinese) [10] 刘宝弟,王宇雄,章毓晋.图像分类中多流形上的词典学习[J].清华大学学报:自然科学版,2012,52(4):575-580 Liu Baodi,Wang Yuxiong,Zhang Yujin.Dictionary learning on multiple manifolds for image classification[J].Journal of Tsinghua University:Science and Technology,2012,52(4):575-580(in Chinese) [11] Shi Jianbo,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905 [12] Ng A,Jordan M,Weiss Y.On spectral clustering:analysis and an algorithm[C]//Advances in Neural Information Processing Systems.Vancouver:MIT Press,2002:849-856 [13] Comaniciu D.An algorithm for data-driven bandwidth selection[J].IEEE Trans Pattern Analysis Machine Intelligent,2003,25(2):281-288 [14] Sarle W.Neural network FAQ[EB/OL].1997 .ftp://ftp.sas.com /pub /neural/FAQ.html [15] Hsu Chihwei,Chang Chihchung,Lin Chihjen.A practical guide to support vector classification [EB/OL].2002 .http://www.cmlab.csie.ntu.edu.tw/~cyy/learning/tutorials/libsvm.pdf [16] Wang Jinjun,Yang Jianchao,Yu Kai,et al.Learning locality constrained linear coding for image classification[C]//Proc IEEE Computer Vision and Pattern Recognition.San Francisco:IEEE Computer Society Press,2010:3360-3367 [17] Yang Jingjing,Li Yuanning,Tian Yonghong,et al.Group sensitive multiple kernel learning for object categorization[C]//Proceedings of International Conference on Computer Vision.Kyoto:IEEE Computer Society Press,2009:436-443
点击查看大图
计量
- 文章访问数: 1872
- HTML全文浏览量: 231
- PDF下载量: 971
- 被引次数: 0