Original task planning method of early warning system of LEO based on DPSO-SA
-
摘要: 为提高天基低轨预警系统在导弹跟踪任务中的效率,建立了天基低轨预警系统初始任务规划模型.该模型包含跟踪精度、任务完成率和资源松弛度等优化指标,考虑导弹跟踪中目标信息的不确定性,定义并构建了跟踪原子任务的不确定度和动态优先级.在此基础上,提出采用离散粒子群(DPSO,Discrete Particle Swarm Optimization)-模拟退火(SA,Simulated Annealing)混合优化算法求解初始任务规划模型,提高了算法收敛速度、精度以及全局搜索能力.仿真算例验证了模型的优点以及DPSO-SA混合优化算法的有效性.Abstract: To improve the resource efficiency for missile tracking with early warning system of low-earth-orbit(LEO), the original task planning model of early warning system of LEO was set up. The model includes the optimizing indexes of tracking precision, task accomplishment and resource slack. The dynamic priority of meta tracking task was defined and designed in view of the information uncertainty of missile object in tracking. Based on the model, a mixed discrete particle swarm optimization (DPSO) and simulated annealing (SA) algorithm was proposed to solve the original task planning problem. The algorithm improves the seeking and solving ability for the global optimal result. Simulation results show the advantage of the model and the validity of DPSO-SA algorithm.
-
[1] 罗开平,李一军.导弹预警卫星调度问题分析[J].现代防御技术,2009,37(6):5-9 Luo Kaiping,Li Yijun.Analysis of the early warning satellite scheduling problem[J].Modern Defence Technology,2009, 37(6): 5-9(in Chinese) [2] 简平,邹鹏,熊伟,等.天基低轨预警系统任务规划问题研究[J].空军工程大学学报学报:军事科学版,2011(4):26-29 Jian Ping,Zou Peng,Xiong Wei,et al.Research on the original task planning problem of early warning system of LEO[J].Journal of Ari for Force Engineering University:Military Science Edition,2011(4):26-29(in Chinese) [3] Xiong N,Svensson P.Multi-sensor management for information fusion:issues and approaches[J].Information Fusion,2002, 3(2): 163-186 [4] Tang Shaoxun,Yi Xianqing,Luo Xueshan.Research on early-warning detecting tasks re-scheduling and sensor resources allocation strategy of midcourse maneuverable ballistic targets[C]//2010 Fourth International Conference on Sensor Technologies and Applications.Venice,Italy:IEEE Press,2010,357-363 [5] Luo Kaiping,Li Yijun,Jiang Wei.Analysis and design of the early-warning satellite scheduling simulation system[C]//International Conference on Virtual Environments,Human-Computer Interfaces and Measurements Systems.Hong Kong:IEEE Press,2009,53-58 [6] 阎志伟,牛轶锋,李汉铃.基于并行禁忌遗传算法(PTGA)的预警卫星传感器调度研究[J].宇航学报,2003,24(6):598-601 Yan Zhiwei,Niu Yifeng,Li Hanling.Study of sensor scheduling for early warning satellite based on parallel tabu genetic algorithm(PTGA) [J].Journal of Astronautics,2003,24(6):598-601(in Chinese) [7] 郭浩波,王颖龙,曾辉.采用遗传模拟退火算法研究导弹预警卫星传感器调度[J].电光与控制,2006,13(4):72-74 Guo Haobo,Wang Yinglong,Zeng Hui.Sensor scheduling for missile early-warning satellite based on genetic and simulated annealing algorithm [J].Electronics Optics & Control,2006, 13(4): 72-74(in Chinese) [8] 薛永宏,王博,安玮,等.低轨星座传感器调度方法[J].飞行器测控学报,2009,28(5):19-23 Xue Yonghong,Wang Bo,An Wei,et al.LEO constellation sensor scheduling algorithm[J].Journal of Spacecraft TT&C Technology,2009,28(5):19-23(in Chinese) [9] 陈曦,邓勇,王春明,等.红外低轨星座多目标传感器调度研究[J].计算机仿真,2011,28(4):43-46 Chen Xi,Deng Yong,Wang Chunming,et al.Multi-object sensor scheduling model and strategy for infrared LEO constellation[J].Computer Simulation,2011,28(4):43-46(in Chinese) [10] 牛轶峰,梁光霞,沈林成.空间预警系统建立导弹目标优先级的多属性决策[J].现代防御技术,2006,34(4):1-5 Niu Yifeng,Liang Guangxia,Shen Lincheng.Establishment of missile target priority by space early warning system[J].Modern Defence Technology,2006,34(4):1-5(in Chinese) [11] Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE Int-l Conf on Neural Networks.Perth,Australia:IEEE Press,1995:1942-1948 [12] Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//Proc the World Multi-conference on Systemics,Cybernetics and Informatics.Washington D C:IEEE Press,1997 :4104-4109 [13] 王联国,洪毅,赵付青,等.一种模拟退火和粒子群混合优化算法[J].计算机仿真,2008,25(11):179-182 Wang Lianguo,Hong Yi,Zhao Fuqing,et al.A hybrid algorithm of simulated annealing and particle swarm optimization[J].Computer Simulation,2008,25(11):179-182(in Chinese) [14] Ozcan E,Mohan C K.Analysis of a simple particle swarm optimization system[J].Intelligent Engineering Systems through Artificial Neural Ntworks,1998(8):253-258
点击查看大图
计量
- 文章访问数: 1484
- HTML全文浏览量: 200
- PDF下载量: 471
- 被引次数: 0