留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CPSO优化的空空导弹μ综合控制器设计

鲁启东 陈欣 张民

鲁启东, 陈欣, 张民等 . 基于CPSO优化的空空导弹μ综合控制器设计[J]. 北京航空航天大学学报, 2013, 39(11): 1475-1479,1508.
引用本文: 鲁启东, 陈欣, 张民等 . 基于CPSO优化的空空导弹μ综合控制器设计[J]. 北京航空航天大学学报, 2013, 39(11): 1475-1479,1508.
Lu Qidong, Chen Xin, Zhang Minet al. μ-synthesis robust control for air-to-air missile based on dynamic acceleration constant PSO arithmetic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1475-1479,1508. (in Chinese)
Citation: Lu Qidong, Chen Xin, Zhang Minet al. μ-synthesis robust control for air-to-air missile based on dynamic acceleration constant PSO arithmetic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1475-1479,1508. (in Chinese)

基于CPSO优化的空空导弹μ综合控制器设计

基金项目: 飞行器自主控制技术教育部工程中心资助项目
详细信息
  • 中图分类号: V249

μ-synthesis robust control for air-to-air missile based on dynamic acceleration constant PSO arithmetic

  • 摘要: 粒子群优化算法(PSO,Particle Swarm Optimization)在空空导弹μ综合控制器参数优化中易出现早熟现象而无法获得全局最优解.针对此问题,提出一种动态加速常数的粒子群优化算法(CPSO,Constant Particle Swarm Optimization).改进算法通过对加速常数的指数形式变化,在寻优前期扩大搜索范围,在后期提高收敛效率,从而避免了寻优过程中的早熟现象.仿真结果表明,改进的CPSO优化算法具有更强的全局搜索能力,设计出的μ综合控制器具有更优的性能,满足给定的性能指标和自动设计指标,节省了大量设计时间,具有工程应用价值.

     

  • [1] 樊会涛, 刘代军.红外近距格斗空-空导弹发展展望[J].红外与激光工程, 2005, 34 (5):564-568 Fan Huitao, Liu Daijun.Development trends of short-range dogfight IR air to air missile[J].Infrared and Laser Engineering, 2005, 34 (5):564-568 (in Chinese)
    [2] 郑建华, 杨涤.鲁棒控制理论在倾斜转弯导弹中的应用[M].北京:国防工业出版社, 2001:81-86, 116-117 Zheng Jianhua, Yang Di.The application of robust control theory to bank-to-turn missile[M].Beijing:National Defense Industry Press, 2001:81-86, 116-117 (in Chinese)
    [3] 张民, 陈欣, 陆宇平.基于改进PSO算法的导弹控制参数优化[J].南京航空航天大学学报, 2009, 41 (4):445-449 Zhang Min, Chen Xin, Lu Yuping.Missile control parameter optimization based on improved PSO algorithm[J].Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41 (4):445-449 (in Chinese)
    [4] 魏秀业, 潘宏侠.粒子群优化及智能故障诊断[M].北京:国防工业出版社, 2010:7-10 Wei Xiuye, Pan Hongxia.Particle swarm optimization and intelligent fault diagnosis[M].Beijing:National Defense Industry Press, 2010:7-10 (in Chinese)
    [5] 吴启迪, 康琦, 汪镭, 等.自然计算导论[M].上海:上海科学技术出版社, 2011:2-9 Wu Qidi, Kang Qi, Wang Lei, et al.Natural computing introduction[M].Shanghai:Shanghai Science and Technology Press, 2011:2-9 (in Chinese)
    [6] 史忠科.鲁棒控制理论[M].北京:国防工业出版社, 2003:187-253 Shi Zhongke.Robust control theory[M].Beijing:National Defense Industry Press, 2003:187-253 (in Chinese)
    [7] Balas G J, Doyle J C, Glover Keith.μ-analysis and synthesis toolbox for use with MATLAB[J].MUSYN Inc and the MathWorks, 2001:2-230
    [8] 张民, 陈欣, 陆宇平.PSO算法用于导弹鲁棒控制器性能权函数优化[J].应用科学学报, 2011, 29 (6):650-654 Zhang Min, Chen Xin, Lu Yuping.Optimization of performance weighted function for missile robust controller using PSO algorithm[J].Journal of Applied Sciences, 2011, 29 (6):650-654 (in Chinese)
    [9] Kennedy J, Eberhart R.Particle swarm optimization[C]//Proc IEEE International Conf.on Neural Networks.Piscataway, NJ:IEEE, 1995:1942-1948
    [10] Kennedy J, Eberhart R.Swarm intelligence[M].Burlington:Morgan Kaufmann Publishers, 2001
    [11] Krohling R A.Gaussian swarm:a novel particle swarm optimization algorithm[C]//IEEE Conference on Cybernetics and Intelligent Systems.Piscataway, NJ:IEEE, 2004:372-376
    [12] Nickabad A, Ebadzadeh M M, Safabakhsh R.A novel particle swarm optimization algorithm with adaptive inertia weight[J].Applied Soft Computing, 2011, 11 (4):3658-3670
    [13] Montes de O M A, StÜ tzle T, Birattari M, et al.Frankenstein-s PSO:A composite particle swarm optimization algorithm[J].IEEE Transactions on Evolutionary Computation, 2009, 13 (5):1120-1132
    [14] Leung S Y S, Tang Yang, Wong W K.A hybrid particle swarm optimization and its application in neural networks[J].Expert Systems with Applications, 2012, 39 (1):395-405
  • 加载中
计量
  • 文章访问数:  1363
  • HTML全文浏览量:  153
  • PDF下载量:  590
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-11
  • 网络出版日期:  2013-11-30

目录

    /

    返回文章
    返回
    常见问答