留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知合成孔径雷达射频干扰抑制处理

麦超云 孙进平 崔如心 张冰尘

麦超云, 孙进平, 崔如心, 等 . 压缩感知合成孔径雷达射频干扰抑制处理[J]. 北京航空航天大学学报, 2014, 40(1): 59-62.
引用本文: 麦超云, 孙进平, 崔如心, 等 . 压缩感知合成孔径雷达射频干扰抑制处理[J]. 北京航空航天大学学报, 2014, 40(1): 59-62.
Mai Chaoyun, Sun Jinping, Cui Ruxin, et al. RFI suppression processing for compressive sensing based SAR imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 59-62. (in Chinese)
Citation: Mai Chaoyun, Sun Jinping, Cui Ruxin, et al. RFI suppression processing for compressive sensing based SAR imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 59-62. (in Chinese)

压缩感知合成孔径雷达射频干扰抑制处理

基金项目: 国家973计划资助项目(2010CB731903)
详细信息
  • 中图分类号: TN95

RFI suppression processing for compressive sensing based SAR imaging

  • 摘要: 对基于压缩感知技术的合成孔径雷达(SAR,Synthetic Aperture Radar)成像,射频干扰(RFI,Radio Frequency Interference)的存在会破坏场景稀疏的先验条件,造成成像质量恶化,使得后续的成像处理无法正确完成的问题,提出了一种压缩感知SAR的RFI抑制方法.首先基于RFI在频域的稀疏特征,采用贪婪算法结合最小描述长度(MDL,Minimum Description Length)估计出RFI分量稀疏度;然后对每个脉冲的回波信号,估计RFI信号分量并在时域直接滤除,再应用常规的压缩感知SAR重构算法实现成像处理.L波段SAR数据的仿真处理结果验证了文中方法的有效性.

     

  • [1] Miller T, Potter L, McCorkle J.RFI suppression for ultra wideband radar[J]. IEEE Trans Aerosp Electron Syst, 1997, 33(4):1142 -1156
    [2] 王彦平, 彭海良, 吴一戎, 等.合成孔径雷达窄带干扰抑制技术综述[J].现代防御技术, 2003, 31(1):46-54 Wang Yanping, Peng Hailiang, Wu Yirong, et al.Summary of narrow band interference suppression in synthetic aperture radar[J].Modern Defence Technology, 2003, 31(1):46-54(in Chinese)
    [3] 黄晓涛, 梁甸农.UWB-SAR抑制RFI技术的参数化方法[J].系统工程与电子技术, 2000, 22(2):94-97 Huang Xiaotao, Liang Diannong. Performance evaluation and test of RFI suppression algorithms for UWB-SAR[J].Systems Engineering and Electronics, 2000, 22(2):94-97(in Chinese)
    [4] Candès E, Wakin M.An introduction to compressive sampling[J].IEEE Signal Process Mag, 2008, 25(2):21-30
    [5] Ender J H G. On compressive sensing applied to radar[J].Signal Processing, 2010, 90(5):1402-1414
    [6] Baraniuk R, Steeghs P. Compressive radar imaging[C]//IEEE Radar Conference.Boston, MA:IEEE, 2007:128-133
    [7] Herman M, Strohmer T. High-resolution radar via compressed sensing[J].IEEE Trans Signal Processing, 2009, 57(6): 2275-2284
    [8] 刘记红, 徐少坤, 高勋章, 等. 压缩感知雷达成像技术综述[J].信号处理, 2011, 27(2):251-260 Liu Jihong, Xu Shaokun, Gao Xunzhang, et al.A review of radar imaging technique based on compressed sensing[J].Signal Processing, 2011, 27(2):251-260(in Chinese)
    [9] Tropp J A.Greed is good:algorithmic results for sparse approximation[J].IEEE Trans on Info Theory, 2004, 50(10): 2231- 2242
    [10] Pati Y C, Rezaiifar R P, Krishnaprasad S.Orthogonal matching pursuits:recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Asilomar Conference in Signals, Systems and Computers.Pacific Grove, CA:IEEE, 1993:40-44
    [11] Tropp J A, Gilbert A C.Signal recovery from partial information by orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12):4655-4666
    [12] Wax M, Kailath T.Detection of signals by information theoretic criteria[J].IEEE Transactions on Speech and Signal Processing, 1985, 33(2):387-392
  • 加载中
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  315
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-06
  • 网络出版日期:  2014-01-20

目录

    /

    返回文章
    返回
    常见问答