留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性回归支持向量机的SMO算法改进

赵长春 姜晓爱 金英汉

赵长春, 姜晓爱, 金英汉等 . 非线性回归支持向量机的SMO算法改进[J]. 北京航空航天大学学报, 2014, 40(1): 125-130.
引用本文: 赵长春, 姜晓爱, 金英汉等 . 非线性回归支持向量机的SMO算法改进[J]. 北京航空航天大学学报, 2014, 40(1): 125-130.
Zhao Changchun, Jiang Xiaoai, Jin Yinghanet al. Improved SMO algorithm of nonlinear regression support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 125-130. (in Chinese)
Citation: Zhao Changchun, Jiang Xiaoai, Jin Yinghanet al. Improved SMO algorithm of nonlinear regression support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 125-130. (in Chinese)

非线性回归支持向量机的SMO算法改进

详细信息
  • 中图分类号: TP301.6

Improved SMO algorithm of nonlinear regression support vector machine

  • 摘要: 为了解决非线性数据和非线性函数的回归问题,采用了支持向量机序列最小优化算法.原始序列最小优化(SMO,Sequential Minimal Optimization)算法存在训练速度慢和训练结果不稳定的缺点,为了能加快SMO算法的训练速度和提高训练结果稳定性,通过改进优化乘子更新方法、采用双阈值法、预存核函数、增加停机准则等方法对SMO算法做了改进.仿真实验表明,改进的算法能很好地对非线性数据和非线性函数进行回归,具有比原始SMO算法更快的训练速度和稳定的训练结果.

     

  • [1] Platt J C.Fast training of support vector machines using sequential minimal optimization[R].MSR-TR-98-14, 1998
    [2] Smola A J, Scholkopf B.A tutorial on support vector regression[R].NC2-TR-1998-030, 1998
    [3] Shevade S K, Keerthi S S, Bhattacharyya C, et al.Improvements to SMO algorithm for SVM regression[J].IEEE Transactions on Neural Networks, 2000, 11(5):1188-1193
    [4] Flake G W, Lawrence S.Efficient SVM regression training with SMO[J].Machine Learning, 2002, 46(1-3):271-290
    [5] 张浩然, 韩正之.回归支持向量机的改进序列最小优化学习算法[J].软件学报, 2003, 14(12):2006-2013 Zhang Haoran, Han Zhengzhi.An improved sequential minimal optimization learning algorithm for regression support vector machine[J].Journal of Software, 2003, 14(12):2006-2013 (in Chinese)
    [6] 刘胜, 李妍妍.自适应GA-SVM参数选择算法研究[J].哈尔滨工程大学学报, 2007, 28(4):398-402 Liu Sheng, Li Yanyan.Parameter selection algorithm for support Vector machines based on adaptive genetic algorithm[J].Journal of Harbin Engineering University, 2007, 28(4):398-402 (in Chinese)
    [7] 闫国华, 朱永生.支持向量机回归的参数选择方法[J].计算机工程, 2009, 35(14):218-220 Yan Guohua, Zhu Yongsheng.Parameters selection method for support vector machine regression[J].Computer Engineering, 2009, 35(14):218-220 (in Chinese)
    [8] 董磊, 任章, 李清东.基于SMO-SVR的飞机舵面损伤故障趋势预测[J].北京航空航天大学学报, 2012, 38(10): 1300-1305 Dong Lei, Ren Zhang, Li Qingdong.Fault prediction for aircraft control surface damage based on SMO-SVR[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10):1300-1305 (in Chinese)
    [9] 王书舟, 伞冶, 张允昌.基于支持向量机改进 SMO 算法的直升机旋翼自转着陆过程建模[J].航空学报, 2009, 30(1): 46-51 Wang Shuzhou, San Ye, Zhang Yunchang.Modeling for landing process of helicopter with rotator self-rotating based on modified SMO algorithm of support vector machine[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(1):46-51(in Chinese)
    [10] 王定成.支持向量机建模预测与控制[M].北京:气象出版社, 2009:48-49 Wang Dingcheng.Prediction and control based on support vector machine modelling[M].Beijing:Meteorological Press, 2009:48-49(in Chinese)
  • 加载中
计量
  • 文章访问数:  2021
  • HTML全文浏览量:  255
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-28
  • 网络出版日期:  2014-01-20

目录

    /

    返回文章
    返回
    常见问答