Experiment on work hardening of milling TB6
-
摘要: 研究了使用涂层硬质合金刀具对钛合金TB6进行端铣加工时,铣削参数以及刀具后刀面磨损量对加工硬化(表面硬化率、硬化层深度以及硬化层硬度分布)的影响,以弄清TB6铣削硬化现象及机理.结果表明,在实验参数范围内,刀具无磨损的情况下,硬化率基本保持在107%~112%范围内,硬化层深度范围为18~36 μm;铣削速度增加时,加工硬化程度会有较为明显的降低现象,而进给量与切深对加工硬化的影响并不明显;刀具磨损对加工硬化的影响较为显著,后刀面磨损量低于0.2 mm时,硬化层深度随着磨损增加从30 μm增加至55 μm,而后刀面磨损量为0.35 mm时,硬化层深度达到了130 μm.刀具磨损后在加工表面下较浅位置出现软化区域,而且随着磨损量的增加,软化越来越明显.Abstract: How the tool wear and milling parameters influence the work hardening in the process of face milling TB6 was studied to figure out the principles of work hardening. The results show that among the parameters selected in the experiments, the work hardening degree ranges from 107% to 112% and the depth of work hardening ranges from 18 μm to 36 μm. The work hardening degree decreases with the increasing of velocity of milling, while the changes of feed and depth of cut show no obvious impacts on it. The amount of flank wear(VB) influences the work hardening a lot. The depth of work hardening changes from 30 μm to 55 μm, when VB increases from 0 to 0.2 mm, while it increases to 130 μm when VB reaches to 0.35 mm. The material softens not deep below the surface and it is more apparent when VB is increasing.
-
Key words:
- TB6 /
- microhardness /
- work hardening /
- surface integrity /
- microstructure
-
[1] Mantle A L, Aspinwall D K.Surface integrity and fatigue life of turned gamma titanium aluminide[J].Journal of Materials Processing Technology, 1997, 72(3):413-420 [2] 杨振朝, 张定华, 姚倡锋, 等.高速铣削速度对 TC4 钛合金表面完整性影响机理[J].南京航空航天大学学报, 2009, 41(5): 644-648 Yang Zhenchao, Zhang Dinghua, Yao Changfeng, et al.Influence mechanism of milling speed on TC4 titanium alloy surface integrity in high-speed milling[J].Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(5):644-648(in Chinese) [3] 杨波.新型钛合金切削加工表面完整性及切削参数优化研究[D].南京:南京航空航天大学, 2010:37-40 Yang Bo.Surface integrity and cutting parameters optimization in machining of new titanium alloys[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:37-40(in Chinese) [4] Umbrello D, Pu Z, Caruso S, et al.The effects of cryogenic cooling on surface integrity in hard machining[J].Procedia Engineering, 2011, 19:371-376 [5] Ginting A, Nouari M.Surface integrity of dry machined titanium alloys[J].International Journal of Machine Tools and Manufacture, 2009, 49(3):325-332 [6] Field M, Kahles J F.Review of surface integrity of machined components[J].Annals of the CIRP, 1971, 20(2):107-108 [7] 付浩.基于位错理论的疲劳裂纹扩展特性研究[D].长沙:长沙理工大学, 2010:7-10 Fu Hao.Study on fatigue crack propagation based on dislocation theory[D].Changsha:Changsha University of Science & Technology, 2010:7-10(in Chinese) [8] 陈日耀.金属切削原理[M].北京:机械工业出版社, 2002:150-152 Chen Riyao.Principles of metal cutting[M].Beijing:China Machine Press, 2002:150-152(in Chinese) [9] 《中国航空材料手册》编辑委员会.中国航空材料手册, 第四卷:钛合金, 铜合金[M].北京:中国标准出版社, 2001: 255-259 Editorial Board of China Aeronautical Materials Handbook.China aeronautical materials handbook, volume fourth:copper alloy, titanium alloy[M].Beijing:China Standard Press, 2001:255-259(in Chinese) [10] 韩德伟.金属硬度检测技术手册[M].长沙:中南大学出版社, 2003:107-109 Han Dewei.Manual testing technique of metal hardness[M].Changsha:Central South University, 2003:107-109(in Chinese) [11] 罗汉兵.钛合金高速铣削刀具失效及加工表面质量实验研究[D].山东:山东大学, 2011:36-37 Luo Hanbing.Experimental investigation on tool failure and machined surface quality for high speed milling[D].Shandong:Shandong University, 2011:36-37(in Chinese)
点击查看大图
计量
- 文章访问数: 1340
- HTML全文浏览量: 149
- PDF下载量: 435
- 被引次数: 0