留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边频相对能量和的柱塞泵磨损状态识别

何兆民 王少萍

何兆民, 王少萍. 基于边频相对能量和的柱塞泵磨损状态识别[J]. 北京航空航天大学学报, 2014, 40(2): 183-187.
引用本文: 何兆民, 王少萍. 基于边频相对能量和的柱塞泵磨损状态识别[J]. 北京航空航天大学学报, 2014, 40(2): 183-187.
He Zhaomin, Wang Shaoping. Wear status recognition of piston pump based on side frequency relative energy summation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 183-187. (in Chinese)
Citation: He Zhaomin, Wang Shaoping. Wear status recognition of piston pump based on side frequency relative energy summation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 183-187. (in Chinese)

基于边频相对能量和的柱塞泵磨损状态识别

基金项目: 国家重点基础研究发展计划资助项目(2014CB046402);国家自然科学基金资助项目(51175014);111计划资助项目;国防基金资助项目(9140A17050113HK01233)
详细信息
  • 中图分类号: TH322

Wear status recognition of piston pump based on side frequency relative energy summation

  • 摘要: 摩擦磨损是飞机柱塞泵典型的渐进性故障,因磨损量难以直接测量,通常采用振动信号进行间接测量.磨损引起的振动信号故障特征微弱,对磨损状态进行准确地识别比较困难.针对上述问题,提出了基于谐波分量边频相对能量和的磨损状态识别方法,该方法对壳体振动信号进行Hilbert包络解调消除高频周期干扰,得到清晰的谐波分量,在各谐波分量的特定边频区间内计算最大能量与平均能量的比值并求和,将该值作为新的特征量来表征柱塞泵的不同磨损状态,利用网格法对边频区间范围寻优.结果表明,边频相对能量和相比传统的特征频率能量对磨损状态的区分度更高,适于磨损状态识别.

     

  • [1] 赵大庆.液压泵污染磨损与控制[M].北京:北京煤炭工业出版社, 1993:1-50 Zhao Daqing.Pollution wear and control of pump[M].Beijing:China Coal Industry and Publishing House, 1993:1-50(in Chinese)
    [2] Bergada J M, Kumar S, Davies D L, et al.A complete analysis of axial piston pump leakage and output flow ripples[J].Applied Mathematical Modelling, 2012, 36(4):1731-1751
    [3] Nie Songlin, Huang Guohe, Li Yongping.Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston pump[J].Tribology International, 2006, 39(11):1342-1354
    [4] Chen Hanxin, Chua P S K, Lim G H.Vibration analysis with lifting scheme and generalized cross validation in fault diagnosis of water hydraulic system[J].Journal of Sound and Vibration, 2007, 301(3-5):458-480
    [5] 田海雷, 李洪儒, 许葆花.基于EEMD和平滑能量算子解调的轴向柱塞泵故障特征提取[J].海军工程大学学报, 2013, 25(1):43-47, 68 Tian Hailei, Li Hongru, Xu Baohua.Fault feature extraction of piston pump based on EEMD and smoothed energy operation separation[J].Journal of Naval University of Engineering, 2013, 25(1):43-47, 68(in Chinese)
    [6] Wang Yanxue, He Zhengjia, Xiang Jiawei.Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox[J].Mechanism and Machine Theory, 2012, 47(1):62-73
    [7] Lee J, Wu Fangji, Zhao Wenyu.Prognostics and health management design for rotary machinery systems:reviews, methodology and applications[J].Mechanical Systems and Signal Processing, 2014, 42(1/2):314-334
    [8] 赵四军, 王少萍, 尚耀星.飞机液压泵源预测与健康管理系统[J].北京航空航天大学学报, 2010, 36(1):14-17 Zhao Sijun, Wang Shaoping, Shang Yaoxing.Prognostics and hea-lth management system of hydraulic power supply[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 14-17(in Chinese)
    [9] Du Jun, Wang Shaoping, Zhang Haiyan.Layered clustering multi-fault diagnosis for hydraulic piston pump[J].Mechanical Systems and Signal Processing, 2013, 36(2):487-504
    [10] Feldman M.Hilbert transform in vibration analysis[J].Mechanical Systems and Signal Processing, 2011, 25(3):735-802
    [11] Proakis J G, Manolakis D G.数字信号处理[M].4版.北京:电子工业出版社, 2007:667-670 Proakis J G, Manolakis D G.Digital signal processing:principles, algorithms, and applications[M].4th ed.Beijing:Publishing House of Electronics Industry, 2007:667-670(in Chinese)
    [12] 盛骤, 谢式千, 潘承毅.概率论与数理统计[M].北京:高等教育出版社, 2008:106-110 Sheng Zhou, Xie Shiqian, Pan Chenyi.Probability and statistics[M].Beijing:Higher Education Press, 2008:106-110(in Chinese)
  • 加载中
计量
  • 文章访问数:  1638
  • HTML全文浏览量:  311
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-15
  • 网络出版日期:  2014-02-20

目录

    /

    返回文章
    返回
    常见问答