Pressure oscillation analysis of aircraft hydraulic braking system considering pipeline
-
摘要: 飞机液压刹车系统通常采用压力伺服阀控制刹车压力,由于布局限制,压力伺服阀和刹车作动器之间往往存在较长的液压管路.管路会给系统引入欠阻尼的频率特性,而且该特性会与压力伺服阀固有的局部压力闭环结构相耦合,使得压力伺服阀的输出压力容易出现振荡、失稳现象.因此通过在飞机液压刹车系统建模中考虑管路模型,在频域上分析了压力伺服阀与管路、容腔耦合的现象和原因,具体给出了管路参数和油液参数变化对压力闭环的影响,并通过时域仿真进一步验证了频域分析的结论.同时分析了匹配设计管路、增加系统阻尼和降低系统增益3种避免压力闭环控制振荡失稳的方法.为飞机液压刹车系统的设计与优化提供了理论参考依据.Abstract: Pressure servo-valve is usually used for aircraft hydraulic braking system, and the brake pipeline between the valve and the actuator is usually long. The long pipeline brings under damping frequency characteristic into the system, which will couple with the local close-loop pressure control structure of pressure servo-valve, and make pressure control oscillate easily. Based on a model considered pipeline for the hydraulic braking system, the reason of pressure servo-valve and pipeline coupling was analyzed. The influence of the changes in pipeline and oil parameters on pressure control was given. Simulations of the pressure control of aircraft hydraulic braking system were conducted to verify the frequency analysis. And three solutions for avoiding pressure oscillation, including matching design of pipeline, increasing the system damping and reducing the gain were also analyzed. Theoretical reference for the design and optimization of the aircraft hydraulic braking system was provided.
-
[1] 李树立, 焦宗夏.液压流体脉动主动控制研究现状与展望[J].机床与液压, 2006:243-246 Li Shuli, Jiao Zongxia.Research actuality and prospect of active control of hydraulic fluid fluctuation[J].Machine Tool and Hydraulics, 2006:243-246(in Chinese) [2] 黄伟明, 吴瑞祥, 张燮年.神经网络及模糊控制在飞机防滑刹车系统中的应用[J].航空学报, 2001, 22(4):317-320 Huang Weiming, Wu Ruixiang, Zhang Xienian.Aircraft antiskid brake system with neural network and fuzzy control[J].Acta Aeronoutica et Astronautica Sinica, 2001, 22(4):317-320(in Chinese) [3] 何恒, 吴瑞祥, 黄伟明.基于ANN与FNN的飞机防滑刹车系统设计[J].航空学报, 2005, 26(1):116-120 He Heng, Wu Ruixiang, Huang Weiming.Design of aircraft antiskid brake system with ANN and FNN[J].Acta Aeronoutica et Astronautica Sinica, 2005, 26(1):116-120(in Chinese) [4] Zhang Ming, Nie Hong, Wei Xiaohui, et al.Research on modelling and simulation for aircraft anti-skid braking[C]//2nd International Symposium on Systems and Control in Aerospace and Astronautics.Piscataway, NJ:IEEE Computer Society, 2008: 1-5 [5] Wei Jianhua, Kong Xiaowu, Qiu Minxiu, et al.Transient response of a valve control hydraulic system withlong pipes[J].Chinese Journal of Mechanical Engineering:English Edition, 2004, 17(1): 31-35 [6] 赵丙龙.考虑管道影响的阀控电液伺服系统建模仿真及应用研究[D].太原:太原理工大学, 2005 Zhao Binglong.The model building, simulation and application research of valve control electro-hydraulic servo system with pipe[D].Taiyuan:Taiyuan University of Technology, 2005(in Chinese) [7] 田源道.电液伺服阀技术[M].北京:航空工业出版社, 2008:36-53 Tian Yuandao.Technology of electrohydraulic servovalves[M].Beijing:Aviation Industry Press, 2008:36-53(in Chinese) [8] 李运华.机电控制[M].北京:北京航空航天大学出版社, 2003:47-65 Li Yunhua.Mechatronic control[M].Beijing:Beijing University of Aeronautics and Astronautics Press, 2003:47-65(in Chinese) [9] Goodson R E, Leonard R G.A survey of modeling techniques for fluid line transients[J].Journal of Basic Engineering, 1972: 94- 474 [10] 程鹏.自动控制原理[M].北京:高等教育出版社, 2010: 201- 215 Cheng Peng.Automatic control principle[M].Beijing:Higher Education Press, 2010:201-215(in Chinese)
点击查看大图
计量
- 文章访问数: 1389
- HTML全文浏览量: 242
- PDF下载量: 490
- 被引次数: 0