留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于L1/2范数正则化的塑性回声状态网络故障诊断模型

逯程 徐廷学 王虹

张红星, 林贵平, 丁汀, 等 . 环路热管温度波动现象的实验分析[J]. 北京航空航天大学学报, 2005, 31(02): 116-120.
引用本文: 逯程, 徐廷学, 王虹等 . 基于L1/2范数正则化的塑性回声状态网络故障诊断模型[J]. 北京航空航天大学学报, 2018, 44(3): 535-541. doi: 10.13700/j.bh.1001-5965.2017.0214
Zhang Hongxing, Lin Guiping, Ding Ting, et al. Experimental investigation on temperature oscillation of loop heat pipes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 116-120. (in Chinese)
Citation: LU Cheng, XU Tingxue, WANG Honget al. A fault diagnosis model of plasticity echo state network based on L1/2-norm regularization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 535-541. doi: 10.13700/j.bh.1001-5965.2017.0214(in Chinese)

基于L1/2范数正则化的塑性回声状态网络故障诊断模型

doi: 10.13700/j.bh.1001-5965.2017.0214
基金项目: 

国家自然科学基金 51605487

山东省自然科学基金 ZR2016FQ03

详细信息
    作者简介:

    逯程  男, 博士研究生。主要研究方向:综合保障

    徐廷学  男, 博士, 教授, 博士生导师。主要研究方向:综合保障

    王虹  女, 硕士, 助理工程师。主要研究方向:综合保障

    通讯作者:

    徐廷学, E-mail: xtx-yt@163.com

  • 中图分类号: V240.2;TP391

A fault diagnosis model of plasticity echo state network based on L1/2-norm regularization

Funds: 

National Natural Science Foundation of China 51605487

Shandong Provincial Natural Science Foundation, China ZR2016FQ03

More Information
  • 摘要:

    为了提升储备池的动态适应性能,克服回声状态网络(ESN)输出权值求解的病态不适定问题,平衡其拟合与泛化能力,提出了一种基于L1/2范数正则化的塑性回声状态网络故障诊断模型。在储备池构建中引入BCM规则对连接权矩阵进行预训练,并在目标函数中添加L1/2范数惩罚项以提高稀疏化效率,利用一个光滑化的L1/2正则子克服迭代数值振荡问题,并采用半阈值迭代法对模型进行求解。将模型应用于机载电台的故障诊断问题中,仿真结果证明了模型的有效性和优越性。

     

  • 图 1  ESN模型结构

    Figure 1.  Architecture of ESN model

    图 2  突触权值修正规则

    Figure 2.  Synaptic weight modification rule

    图 3  L1/2-PESN模型结构

    Figure 3.  Architecture of L1/2-PESN model

    图 4  机载通信电台组成

    Figure 4.  Composition of airborne communication station

    表  1  离散化处理的故障数据

    Table  1.   Fault data after discrete processing

    序号 测试参数 故障模块
    c1 c2 c3 c4 c5 c6
    1 2 0 1 1 1 1 d1
    2 1 2 1 2 1 2 d2
    174 1 1 1 1 1 2 d2
    175 1 2 1 0 1 1 d1
    下载: 导出CSV

    表  2  诊断方法性能对比

    Table  2.   Performance comparison of diagnostic methods

    方法 储备池生成时间/s 训练时间/s 诊断正确率/%
    BPNN 43.76 79.6
    传统ESN 0.49 14.13 88.4
    BCM-ESN 6.04 14.37 90.5
    L1/2-ESN 0.36 16.78 91.2
    L1/2-PESN 6.58 16.64 93.1
    下载: 导出CSV
  • [1] CHINE W, MELLIT A, LUGHI V, et al.A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J].Renewable Energy, 2016, 90:501-512. doi: 10.1016/j.renene.2016.01.036
    [2] UNAL M, ONAT M, DEMETGUL M, et al.Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network[J].Measurement, 2014, 58:187-196. doi: 10.1016/j.measurement.2014.08.041
    [3] SHATNAWI Y, AL-KHASSAWENEH M.Fault diagnosis in internal combustion engines using extension neural network[J].IEEE Transactions on Industrial Electronics, 2014, 61(3):1434-1443. doi: 10.1109/TIE.2013.2261033
    [4] JAEGER H. The "echo state" approach to analysing and training recurrent neural networks-with an erratum note[R]. Bonn: German National Research Center for Information Technology GMD Technical Report, 2001.
    [5] LUN S X, YAO X S, QI H Y, et al.A novel model of leaky integrator echo state network for time-series prediction[J].Neurocomputing, 2015, 159:58-66.
    [6] VARSHNEY S, VERMA T.Half hourly electricity load prediction using echo state network[J].International Journal of Science and Research, 2014, 3(6):885-888.
    [7] MORANDO S, JEMEI S, HISSEL D, et al.ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[J].Mathematics and Computers in Simulation, 2017, 131:283-294. doi: 10.1016/j.matcom.2015.06.009
    [8] 许美玲, 韩敏.多元混沌时间序列的因子回声状态网络预测模型[J].自动化学报, 2015, 41(5):1042-1046.

    XU M L, HAN M.The model of factor echo state network prediction for multivariate chaotic time series[J].Acta Automatica Sinica, 2015, 41(5):1042-1046(in Chinese).
    [9] 郭嘉, 雷苗, 彭喜元.基于相应簇回声状态网络静态分类方法[J].电子学报, 2011, 39(3A):14-18.

    GUO J, LEI M, PENG X Y.Static classification method based on corresponding cluster echo state network[J].Acta Sinica, 2011, 39(3A):14-18(in Chinese).
    [10] SCARDAPANE S, UNCINI A.Semi-supervised echo state networks for audio classification[J].Cognitive Computation, 2017, 9(1):125-135. doi: 10.1007/s12559-016-9439-z
    [11] SONG Q S, FENG Z R.Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time series[J].Neurocomputing, 2010, 73(10-12):2177-2185. doi: 10.1016/j.neucom.2010.01.015
    [12] MARTIN C E, REGGIA J A.Fusing swarm intelligence and self-assembly for optimizing echo state networks[J].Computational Intelligence and Neuroscience, 2015, 2015(5-6):642429.
    [13] DUTOIT X, SCHRAUWEN B, VAN CAMPENHOUT J, et al.Pruning and regularization in reservoir computing[J].Neurocomputing, 2009, 72(7):1534-1546.
    [14] KUMP P, BAI E W, CHAN K, et al.Variable selection via RIVAL(removing irrelevant variables amidst Lasso iterations) and its application to nuclear material detection[J].Automatica, 2012, 48(9):2107-2115. doi: 10.1016/j.automatica.2012.06.051
    [15] SHI Z, HAN M.Support vector echo-state machine for chaotic time-series prediction[J].IEEE Transactions on Neural Networks, 2007, 18(2):359-372. doi: 10.1109/TNN.2006.885113
    [16] 刘建伟, 李双成, 罗雄麟.p范数正则化支持向量机分类算法[J].自动化学报, 2012, 38(1):76-87.

    LIU J W, LI S C, LUO X L.Classification algorithm of support vector machine via p-norm regularization[J].Acta Automatica Sinica, 2012, 38(1):76-87(in Chinese).
    [17] 韩敏, 李德才.基于替代函数及贝叶斯框架的1范数ELM算法[J].自动化学报, 2011, 37(11):1344-1350.

    HAN M, LI D C.An norm 1 regularization term ELM algorithm based on surrogate function and Bayesian framework[J].Acta Automatica Sinica, 2011, 37(11):1344-1350(in Chinese).
    [18] ZOU H, HASTIE T.Regularization and variable selection via the elastic net[J].Journal of the Royal Statistical Society, 2005, 67(2):301-320. doi: 10.1111/j.1467-9868.2005.00527.x/full
    [19] LUKOŠEVIČIUS M, JAEGER H.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review, 2009, 3(3):127-149. doi: 10.1016/j.cosrev.2009.03.005
    [20] CASTELLANI G C, INTRATOR N, SHOUVAL H, et al.Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons[J].Network:Computation in Neural Systems, 1999, 10(2):111-121. doi: 10.1088/0954-898X_10_2_001
    [21] LEFORT M, BONIFACE Y, GIRAU B. Self-organization of neural maps using a modulated BCM rule within a multimodal architecture[C]//Brain Inspired Cognitive Systems 2010. Berlin: Springer, 2010: 26-38.
    [22] TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society, 1996, 58(1):267-288.
    [23] 彭义刚, 索津莉, 戴琼海, 等.从压缩传感到低秩矩阵恢复:理论与应用[J].自动化学报, 2013, 39(7):981-994.

    PENG Y G, SUO J L, DAI Q H, et al.From compressed sensing to low-rank matrix recovery:Theory and applications[J].Acta Automatica Sinica, 2013, 39(7):981-994(in Chinese).
    [24] ZOU H.The adaptive lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 101(476):1418-1429. doi: 10.1198/016214506000000735
    [25] XU Z, ZHANG H, WANG Y, et al.L 1/2 regularization[J].Science China Information Sciences, 2010, 53(6):1159-1169. doi: 10.1007/s11432-010-0090-0
    [26] DAUBECHIES I, DEVORE R, FORNASIER M, et al.Iteratively reweighted least squares minimization for sparse recovery[J].Communications on Pure and Applied Mathematics, 2010, 63(1):1-38.
    [27] XU Z, CHANG X, XU F, et al.L1/2 regularization:A thresholding representation theory and a fast solver[J].IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1013-1027. doi: 10.1109/TNNLS.2012.2197412
    [28] ZENG J, LIN S, WANG Y, et al.L1/2 regularization:Convergence of iterative half thresholding algorithm[J].IEEE Transactions on Signal Processing, 2014, 62(9):2317-2329. doi: 10.1109/TSP.2014.2309076
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  112
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 录用日期:  2017-08-11
  • 网络出版日期:  2017-10-19

目录

    /

    返回文章
    返回
    常见问答