留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多轴悬浮式低频振动传感器的理论研究

姚京京 郑德智 马康 朱凯 樊尚春

姚京京, 郑德智, 马康, 等 . 多轴悬浮式低频振动传感器的理论研究[J]. 北京航空航天大学学报, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524
引用本文: 姚京京, 郑德智, 马康, 等 . 多轴悬浮式低频振动传感器的理论研究[J]. 北京航空航天大学学报, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524
YAO Jingjing, ZHENG Dezhi, MA Kang, et al. Theoretical research on multi-axis maglev low-frequency vibration sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524(in Chinese)
Citation: YAO Jingjing, ZHENG Dezhi, MA Kang, et al. Theoretical research on multi-axis maglev low-frequency vibration sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1481-1488. doi: 10.13700/j.bh.1001-5965.2017.0524(in Chinese)

多轴悬浮式低频振动传感器的理论研究

doi: 10.13700/j.bh.1001-5965.2017.0524
基金项目: 

国家重大科学仪器设备开发专项项目 2014YQ350461

国家科技支撑计划 2014BAF08B01

详细信息
    作者简介:

    姚京京  女, 硕士研究生。主要研究方向:多轴悬浮式低频振动传感器

    郑德智  男, 博士, 副教授, 博士生导师。主要研究方向:传感器敏感机理及检测系统

    通讯作者:

    郑德智, E-mail:zhengdezhi@buaa.edu.cn

  • 中图分类号: TH825

Theoretical research on multi-axis maglev low-frequency vibration sensor

Funds: 

National Key Scientific Instrument and Equipment Development Project 2014YQ350461

National Key Technology Research and Development Program of China 2014BAF08B01

More Information
  • 摘要:

    设计了一种新型结构的磁悬浮式低频振动传感器,用于航空航天微振动的多轴测量。该传感器采用电磁、永磁混合结构以及微弹簧作为支承元件,通过轴向位移检测电路和光电位移传感器对磁悬浮质量块与壳体间的相对位移进行检测,实现低频振动信号的多轴测量。动态测量时,磁悬浮质量块在电磁力、重力和弹力的共同作用下可回到平衡位置并实现稳定悬浮,通过调整传感器的控制电流,可主动控制系统等效刚度和等效阻尼,从而有效地降低了系统的固有频率,扩展了传感器的频率响应范围。理论分析得到该传感器的下限截止频率为0.6 Hz,实验结果表明该传感器具有良好的低频响应,本文方法为多轴低频振动传感器设计提供了新思路。

     

  • 图 1  多轴悬浮式低频振动传感器整体结构示意图

    Figure 1.  Schematic diagram of overall structure of multi-axis maglev low-frequency vibration sensor

    图 2  Z轴位移自检测原理示意图

    Figure 2.  Schematic diagram of principle of Z-axial displacement self-sensing

    图 3  多轴悬浮式低频振动传感器工作原理示意图

    Figure 3.  Schematic diagram of working principle of multi-axis maglev low-frequency vibration sensor

    图 4  典型磁悬浮系统的等效力学模型

    Figure 4.  Equivalent mechanical model of typical maglev system

    图 5  磁悬浮结构磁力线分布图

    Figure 5.  Magnetic induction of maglev structure

    图 6  电磁力与控制电流和气隙位移关系

    Figure 6.  Relationship between electromagnetic force and control current and air gap displacement

    图 7  零极点分布图

    Figure 7.  Zero-pole distribution diagram

    图 8  多轴悬浮式低频振动传感器单位阶跃响应曲线

    Figure 8.  Unit step response curves of multi-axis maglev low-frequency vibration sensor

    图 9  多轴悬浮式低频振动传感器对数频率特性曲线

    Figure 9.  Logarithmic frequency characteristic curves of multi-axis maglev low-frequency vibration sensor

    图 10  传感器实测Z轴信号

    Figure 10.  Measured signal of Z-axis by sensor

    表  1  多轴悬浮式低频振动传感器结构参数

    Table  1.   Structure parameters of multi-axis maglev low-frequency vibration sensor

    参数 数值
    电磁线圈外径D1/mm 36
    电磁线圈内径d1/mm 14
    电磁线圈高度h1/mm 20
    漆包线线径d2/mm 0.18
    电磁线圈匝数N 3 000
    圆柱形永磁体直径D2/mm 10
    圆柱形永磁体高度h2/mm 12
    圆柱形永磁体质量m /g 2.0
    微弹簧刚度系数k/(N·m-1) 7.2
    下载: 导出CSV

    表  2  悬浮体所受电磁力数值

    Table  2.   Values of electromagnetic attractive force of maglev mass block

    N
    电磁力 X轴方向 Y轴方向 Z轴方向
    虚功力 2.908 8×10-4 1.060 4×10-4 2.055 8×10-2
    麦克斯韦力 1.681 4×10-4 2.391 9×10-4 2.420 5×10-2
    下载: 导出CSV

    表  3  阶跃响应主要特征

    Table  3.   Step response main features

    阻尼比ξ 响应时间ts/s 超调量σ/%
    0.3 3.38 44.5
    0.5 1.94 29.8
    0.6 1.77 24.7
    0.7 1.24 23.0
    下载: 导出CSV
  • [1] 赵锦春.低频超低频振动计量技术应用分析[J].信息技术与标准化, 2011(5):78-81.

    ZHAO J C.The application prospects of metrology technology of low and super low-frequency vibration measurement[J].Information Technology & Standardization, 2011(5):78-81(in Chinese).
    [2] 江东, 杨嘉祥.基于磁悬浮效应的三维振动测量[J].仪器仪表学报, 2011, 32(3):557-562.

    JIANG D, YANG J X.Three-dimensional vibration measurement based on magnetic levitation effect[J].Chinese Journal of Scientific Instrument, 2011, 32(3):557-562(in Chinese).
    [3] PARASHAR S K, KUMAR A.Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells[J].Archive of Applied Mechanics, 2015, 85(5):641-656. doi: 10.1007/s00419-014-0977-0
    [4] YURIN A I, DMITRIEV A V, KRASIVSKAYA M I, et al.Adaptive contactless fiber-optic vibration displacement sensor[J].Measurement Techniques, 2017, 59(11):1146-1150. doi: 10.1007/s11018-017-1106-6
    [5] 袁新江, 姜洋, 汪磊磊, 等.大型精密测量设备的微振研究[J].电子机械工程, 2012, 28(1):13-16.

    YUAN X J, JIANG Y, WANG L L, et al.Research on micro-vibration of large-scale precise measurement equipment[J].Electro-Mechanical Engineering, 2012, 28(1):13-16(in Chinese).
    [6] 樊尚春.传感器技术及应用[M].3版.北京:北京航空航天大学出版社, 2016:308-314.

    FAN S C.Sensor technology and application[M].3rd ed.Beijing:Beihang University Press, 2016:308-314(in Chinese).
    [7] 孙承文. 基于DVD光读取头的超低频振动传感器机理的研究[D]. 合肥: 合肥工业大学, 2009: 5-8.

    SUN C W. The research on mechanism of ultra-low frequency vibration sensor mechanism based on DVD pickup[D]. Hefei: Hefei University of Technology, 2009: 5-8(in Chinese).
    [8] 裴雪红. 基于改进RBF神经网络的PID控制[D]. 哈尔滨: 哈尔滨理工大学, 2010: 28-32.

    PEI X H. Improved PID control based on RBF neural network[D]. Harbin: Harbin University of Science and Technology, 2010: 28-32(in Chinese).
    [9] 陈兴华. 高温超导EMS磁浮系统的鲁棒控制器的研究[D]. 成都: 西南交通大学, 2008: 4-8.

    CHEN X H. Study on robost controller for high-temperature superconductor EMS system[D]. Chengdu: Southwest Jiaotong University, 2008: 4-8(in Chinese).
    [10] VENGHI L E, GONZALEZ G N, SERRA F M.Implementation and control of a magnetic levitation system[J].IEEE Latin America Transactions, 2016, 14(6):2651-2656. doi: 10.1109/TLA.2016.7555233
    [11] USWARMAN R, CAHYADI A I, WAHYUNGGORO O. Control of a magnetic levitation system using feedback linearization[C]//International Conference on Computer, Control, Informatics and Its Applications. Piscataway, NJ: IEEE Press, 2014: 95-98.
    [12] BOONSATIT N, PUKDEBOON C.Adaptive fast terminal sliding mode control of magnetic levitation system[J].Journal of Control Automation & Electrical Systems, 2016, 27(4):1-9.
    [13] 高志华, 胡业发.磁力轴承刚度阻尼特性研究[J].中国制造业信息化, 2005, 34(2):130-132.

    GAO Z H, HU Y F.Research on characteristic of stiffness and damping for active magnetic bearing[J].Machine Design and Manufacturing Engineering, 2005, 34(2):130-132(in Chinese).
    [14] 江东, 高颖.磁悬浮效应检振系统设计[J].电机与控制学报, 2008, 12(3):343-347.

    JIANG D, GAO Y.Vibration measuring principle and system based on magnetic levitation effect[J].Electric Machines and Control, 2008, 12(3):343-347(in Chinese).
    [15] 汪龙芳, 贺卫亮.基于索膜有限元模型的翼伞气动变形仿真[J].北京航空航天大学学报, 2017, 43(1):47-52.

    WANG L F, HE W L.Parafoil aerodynamic deformation simulation based on cable-membrane finite element model[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):47-52(in Chinese).
    [16] LI Z, LUN Q Q.Analysis of magnetic field and levitation force characteristics for 3-DOF deflection type PM motors[J].Journal-Chinese Institute of Engineers, 2016, 39(6):1-9.
    [17] 安建军. 冲击波压力传感器动态灵敏度研究[D]. 太原: 中北大学, 2008: 11-14.

    AN J J. The research of the dynamic sensitivity of the shock wave pressure sensor[D]. Taiyuan: Zhongbei University, 2008: 11-14(in Chinese).
    [18] 佘天莉. 测振传感器的动态特性补偿研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2006: 17-18.

    SHE T L. The research on dynamic characteristics compensation of vibration sensor[D]. Harbin: Institute of Engineering Mechanics China Seismological Bureau, 2006: 17-18(in Chinese).
    [19] KUREK J. Step response identification of inertial model for oscillating system[M]//JANUSZ K. Advanced mechatronics solutions. Berlin: Springer International Publishing, 2016: 51-56.
    [20] 朱中华. 微压压力传感器的设计与研究[D]. 镇江: 江苏大学, 2008: 28-29.

    ZHU Z H. Design and research of micropressure sensor[D]. Zhenjiang: Jiangsu University, 2008: 28-29(in Chinese).
    [21] LANG Z Q, BILLINGS S A.Output frequency characteristics of nonlinear systems[J].International Journal of Control, 2015, 64(6):1049-1067.
    [22] TAN N, ATHERTON D P, YVCE A.Computing step and impulse responses of closed loop fractional order time delay control systems using frequency response data[J].International Journal of Dynamics & Control, 2016, 5(1):1-10.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  147
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-11
  • 录用日期:  2017-09-21
  • 网络出版日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答