留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成分数据的空间自回归模型

黄婷婷 王惠文 SAPORTAGilbert

黄婷婷, 王惠文, SAPORTAGilbert等 . 成分数据的空间自回归模型[J]. 北京航空航天大学学报, 2019, 45(1): 93-98. doi: 10.13700/j.bh.1001-5965.2018.0253
引用本文: 黄婷婷, 王惠文, SAPORTAGilbert等 . 成分数据的空间自回归模型[J]. 北京航空航天大学学报, 2019, 45(1): 93-98. doi: 10.13700/j.bh.1001-5965.2018.0253
HUANG Tingting, WANG Huiwen, SAPORTA Gilbertet al. Spatial autoregressive model for compositional data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 93-98. doi: 10.13700/j.bh.1001-5965.2018.0253(in Chinese)
Citation: HUANG Tingting, WANG Huiwen, SAPORTA Gilbertet al. Spatial autoregressive model for compositional data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 93-98. doi: 10.13700/j.bh.1001-5965.2018.0253(in Chinese)

成分数据的空间自回归模型

doi: 10.13700/j.bh.1001-5965.2018.0253
基金项目: 

国家自然科学基金 71420107025

详细信息
    作者简介:

    黄婷婷  女, 博士研究生。主要研究方向:复杂数据的回归模型建模方法

    王惠文  女, 博士, 教授, 博士生导师。主要研究方向:经济管理中复杂数据统计分析的理论、方法与应用

    通讯作者:

    王惠文, E-mail: wanghw@vip.sina.com

  • 中图分类号: F222

Spatial autoregressive model for compositional data

Funds: 

National Natural Science Foundation of China 71420107025

More Information
  • 摘要:

    针对已有成分数据线性回归模型对研究对象相互独立的严格要求,提出了含有成分数据和普通数据的空间自回归模型,在此基础上提出了成分数据空间自回归模型的估计方法。新模型结合了空间自回归模型处理因变量之间相互依赖的优势,可同时处理成分数据和普通数据。通过利用等距对数比(ilr)变换将成分数据解约束,得到了新模型的参数估计量。蒙特卡罗模拟实验验证了所提估计方法的有效性。

     

  • 图 1  的样本偏差

    Figure 1.  Sample deviation of and

    图 2  的标准差及的总方差

    Figure 2.  Standard deviation of , and total variance of

    图 3  nρ取不同值时,偏差箱线图

    Figure 3.  Boxplots of deviation of when n and ρ change

  • [1] RAMSAY J O, SILVERMAN B W.Functional data analysis[M].Berlin:Springer, 1997.
    [2] RAMSAY J O, SILVERMAN B W.Applied functional data analysis:Methods and case studies[M].Berlin:Springer, 2002.
    [3] VIEU P, FERRATY F.Nonparametric functional data analysis[M].Berlin:Springer, 2006.
    [4] PAWLOWSKY-GLAHN V, BUCCIANTI A.Compositional data analysis:Theory and applications[M].Chichester:Wiley-Blackwell, 2011.
    [5] BILLARD L, DIDAY E.Symbolic regression analysis[M]//JAJUGA K, SOKOLOWSKI A, BOCK H.Classification, clustering, and data analysis.Berlin: Springer, 2002: 281-288.
    [6] BILLARD L, DIDAY E.Regression analysis for interval-valued data[M].Berlin:Springer, 2000:369-374.
    [7] FRY J M, FRY T R L, MCLAREN K R.Compositional data analysis and zeros in micro data[J].Applied Economics, 2000, 32(8):953-959. doi: 10.1080/000368400322002
    [8] PAWLOWSKY-GLAHN V, EGOZCUE J J.Exploring compositional data with the CoDa-dendrogram[J].Austrian Journal of Statistics, 2011, 40(1 & 2):103-113.
    [9] PAWLOWSKY-GLAHN V, EGOZCUE J J, TOLOSANA-DELGADO R.Modelling and analysis of compositional data[J].Hoboken:John Wiley & Sons, Ltd., 2015:152-154.
    [10] AITCHISON J.The statistical analysis of compositional data[M].Berlin:Springer, 1986.
    [11] AITCHISON J.The statistical analysis of compositional data[J].Journal of the Royal Statistical Society Series B, 1982, 44(2):139-177.
    [12] HRON K, FILZMOSER P, THOMPSON K.Linear regression with compositional explanatory variables[J].Journal of Applied Statistics, 2012, 39(5):1115-1128. doi: 10.1080/02664763.2011.644268
    [13] ATCHISON J, SHEN S M.Logistic-normal distributions:Some properties and uses[J].Biometrika, 1980, 67(2):261-272.
    [14] WANG H, SHANGGUAN L, WU J, et al.Multiple linear regression modeling for compositional data[J].Neurocomputing, 2013, 122:490-500. doi: 10.1016/j.neucom.2013.05.025
    [15] TOLOSANA-DELGADO R, EYNATTEN H V.Simplifying compositional multiple regression:Application to grain size controls on sediment geochemistry[J].Computers & Geosciences, 2010, 36(5):577-589.
    [16] ANSELIN L.Spatial econometrics:Methods and models[M].Berlin:Springer, 1988.
    [17] 林光平, 龙志和, 吴梅.中国地区经济σ-收敛的空间计量实证分析[J].数量经济技术经济研究, 2006, 23(4):14-21. doi: 10.3969/j.issn.1000-3894.2006.04.002

    LIN G P, LONG Z H, WU M.A spatial investigation of σ-convergence in China[J].The Journal of Quantitative & Technical Economics, 2006, 23(4):14-21(in Chinese). doi: 10.3969/j.issn.1000-3894.2006.04.002
    [18] 郭金龙, 王宏伟.中国区域间资本流动与区域经济差距研究[J].管理世界, 2003(7):45-58.

    GUO J L, WANG H W.Study on the regional capital flows and regional economic differences in China[J].Management World, 2003(7):45-58(in Chinese).
    [19] TOPA G.Social interactions, local spillovers and unemployment[J].Review of Economic Studies, 2010, 68(2):261-295.
    [20] BAICKER K.The spillover effects of state spending[J].Journal of Public Economics, 2005, 89(2-3):529-544. doi: 10.1016/j.jpubeco.2003.11.003
    [21] ORD H.Estimation methods for models of spatial interaction[J].Publications of the American Statistical Association, 1975, 70(349):120-126. doi: 10.1080/01621459.1975.10480272
    [22] LEE L F.Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models[J].Econometrica, 2004, 72(6):1899-1925. doi: 10.1111/ecta.2004.72.issue-6
    [23] KELEJIAN H, PRUCHA I R.A generalized moments estimator for the autoregressive parameter in a spatial model[J].International Economic Review, 1999, 40(2):509-533. doi: 10.1111/iere.1999.40.issue-2
    [24] LEE L F.GMM and 2SLS estimation of mixed regressive, spatial autoregressive models[J].Journal of Econometrics, 2007, 137(2):489-514. doi: 10.1016/j.jeconom.2005.10.004
    [25] LESAGE J P, PACE R K.Introduction to spatial econometrics[M].New York:CRC Press, 2009:513-514.
    [26] EGOZCUE J J, PAWLOWSKYGLAHN V, MATEUFIGUERAS G, et al.Isometric logratio transformations for compositional data analysis[J].Mathematical Geology, 2003, 35(3):279-300. doi: 10.1023/A:1023818214614
    [27] QU X, LEE L F.Estimating a spatial autoregressive model with an endogenous spatial weight matrix[J].Journal of Econometrics, 2015, 184(2):209-232. doi: 10.1016/j.jeconom.2014.08.008
  • 加载中
图(3)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  94
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-03
  • 录用日期:  2018-07-28
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答