留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合正则化策略的人脸表情识别方法

兰凌强 李欣 刘淇缘 卢树华

李力, 张永胜, 董臻, 等 . 电离层对星载SAR影响的多相位屏仿真方法[J]. 北京航空航天大学学报, 2012, (9): 1163-1166.
引用本文: 兰凌强, 李欣, 刘淇缘, 等 . 基于联合正则化策略的人脸表情识别方法[J]. 北京航空航天大学学报, 2020, 46(9): 1797-1806. doi: 10.13700/j.bh.1001-5965.2020.0073
Li Li, Zhang Yongsheng, Dong Zhen, et al. Simulation method of ionospheric effects on spaceborne SAR using multiple phase-screen technic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (9): 1163-1166. (in Chinese)
Citation: LAN Lingqiang, LI Xin, LIU Qiyuan, et al. Facial expression recognition method based on a joint normalization strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1797-1806. doi: 10.13700/j.bh.1001-5965.2020.0073(in Chinese)

基于联合正则化策略的人脸表情识别方法

doi: 10.13700/j.bh.1001-5965.2020.0073
基金项目: 

国家重点研发计划 2016YFC0801005

中央高校基本科研业务费专项资金 2019JKF225

详细信息
    作者简介:

    兰凌强  男, 硕士研究生。主要研究方向:计算机视觉

    李欣  男, 博士, 副教授, 硕士生导师。主要研究方向:信息技术

    刘淇缘   女, 硕士研究生。主要研究方向:计算机视觉

    卢树华   男, 博士, 副教授, 硕士生导师。主要研究方向:安全防范技术

    通讯作者:

    卢树华, E-mail:lushuhua@ppsuc.edu.cn

  • 中图分类号: TP391

Facial expression recognition method based on a joint normalization strategy

Funds: 

National Key R & D Program of China 2016YFC0801005

the Fundamental Funds for the Central Universities 2019JKF225

More Information
  • 摘要:

    针对目前人脸表情识别大多采用基于深度学习的端到端特征提取及分类方法的现象,提出了一种新的深度模型优化方法。基于ResNet18残差网络架构和正则化思想,提出了联合正则化策略,即将过滤器响应正则化和批量正则化、实例正则化和组正则化、组正则化和批量正则化分别嵌入网络之中,平衡和改善特征数据分布,弥补单一正则化的缺点,提升模型性能。在2个公开数据集FER2013和CK+进行了验证和测试,最高准确率分别达到了73.558%和94.9%,实验结果表明,联合正则化策略提高了基础网络的性能,其表现优于诸多当前较新的人脸表情识别方法。

     

  • 图 1  FER2013数据集表情分类示例及表情数量分布

    Figure 1.  Samples of FER2013 dataset for facial expression and distribution of number of each facial expression

    图 2  CK+数据集表情分类示例及表情数量分布

    Figure 2.  Samples of CK+ dataset for facial expression and distribution of number of each facial expression

    图 3  网络架构

    (a)为采用BN/FRN/GN/IN单一正则化的残差模块,箭头指向(a)表示整个网络以(a)的模块为基础;(b)、(c)、(d)为所提3种优化策略在残差块中的应用,箭头指向(b)、(c)、(d)分别表示使用(b)、(c)、(d)作为基础模块的残差网络。

    Figure 3.  Network architecture

    图 4  FER2013私有和公有测试集混淆矩阵

    Figure 4.  Confusion matrix for FER2013 private and public test sets

    图 5  CK+数据集混淆矩阵

    Figure 5.  Confusion matrix for CK+ dataset

    表  1  基础框架以及添加联合正则化策略后的实验结果

    Table  1.   Experimental results of basic framework and adding joint normalization strategies

    模型 准确率/%
    文献[38] 71.190
    Model1(本文) 73.558
    Model2(本文) 73.534
    Model3(本文) 73.031
    下载: 导出CSV

    表  2  残差网络添加联合正则化数量的效果比较

    Table  2.   Comparison of impact of adding number of joint normalization based on residual network

    数量 准确率/%
    Model1 Model2 Model3
    0 71.190 71.190 71.190
    1 72.555 72.722 72.499
    1-2 72.053 72.417 71.691
    1-3 73.558 73.530 73.031
    1-4 72.778 72.416 72.723
    下载: 导出CSV

    表  3  单一正则化与联合正则化(在前3个残差块中使用)的比较

    Table  3.   Comparison between individual normalization and joint normalization(used in the first three residual blocks)

    优化策略 准确率/%
    BN 71.190
    IN 73.168
    GN 73.029
    FRN 72.276
    Model1 73.558
    Model2 73.530
    Model3 73.031
    下载: 导出CSV

    表  4  本文方法与目前较新的方法在FER2013数据集上准确率比较

    Table  4.   Comparison of accuracy rate between proposed method and state-of-the-art methods on FER2013 dataset

    模型 准确率/%
    SHCNN[39] 69.100
    文献[40] 70.910
    IcRL[27] 72.360
    文献[41] 72.640
    Model1(本文) 73.558
    Model2(本文) 73.534
    Model3(本文) 73.031
    下载: 导出CSV

    表  5  本文方法与目前较新的方法在CK+数据集上准确率比较

    Table  5.   Comparison of accuracy rate between proposed method and state-of-the-art methods on CK+ dataset

    模型 准确率/%
    3DCNN-DAP[28] 92.4
    Inception[26] 93.2
    文献[1] 93.2
    DAM-CNN[42] 95.9
    文献[38] 89.3
    Model1(本文) 94.9
    Model2(本文) 93.6
    Model3(本文) 94.1
    下载: 导出CSV
  • [1] JAIN D K, SHAMSOLMOALI P, SEHDEV P.Extended deep neural network for facial emotion recognition[J].Pattern Recogntion Letters, 2019, 120:69-74. doi: 10.1016/j.patrec.2019.01.008
    [2] HU S H, HU Y M, LI J Q, et al.Natural scene facial expression recognition based on differential features[C]//2019 Chinese Automation Congress(CAC).Piscataway: IEEE Press, 2019: 2840-2844.
    [3] LI Y, CAO G T, CAO W M.Stacking-based deep neural network for facial expression recognition[C]//2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).Piscataway: IEEE Press, 2019: 1338-1342.
    [4] HE J, CAI J F, FANG L Z, et al.A method of facial expression recognition based on LBP fusion of key expressions areas[C]//The 27th Chinese Control and Decision Conference(2015 CCDC).Piscataway: IEEE Press, 2015: 4200-4204.
    [5] OJALA T, PIETIKÄINEN M, MÄENPÄÄ T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. doi: 10.1109/TPAMI.2002.1017623
    [6] IOFFE S, SZEGEDY C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning (ICML).New York: ACM, 2015: 448-456.
    [7] ULYANOV D, VEDALDI A, LEMPITSKY V.Instance normalization: The missing ingredient for fast stylization[EB/OL].(2017-11-06)[2020-02-20].
    [8] WU Y X, HE K M.Group normalization[C]//The European Conference on Computer Vision (ECCV).Berlin: Springer, 2018: 3-19.
    [9] SINGH S, KRISHNAN S.Filter response normalization layer: Fliminating batch dependence in the training of deep neural networks[EB/OL].(2019-11-21)[2020-02-20].
    [10] GOODFELLOW I J, ERHAN D, CARRIER P L, et al.Challenges in representation learning: A report on three machine learning contests[C]//International Conference on Neural Information Processing.Berlin: Springer, 2013: 117-124.
    [11] LUCEY P, COHN J F, KANADE T, et al.The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway: IEEE Presss, 2010: 94-10.
    [12] DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2005, 1: 886-893.
    [13] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 1999, 2: 1150-1157.
    [14] LYONS M J, AKAMATSU S, KAMACHI M, et al.The Japanese female facial expression (JAFFE) database[C]//Proceedings of 3rd International Conference on Automatic Face and Gesture Recognition.Piscataway: IEEE Press, 1998: 14-16.
    [15] ZHAO G, HUANG X, TAINI M, et al.Facial expression recognition from near-infrared videos[J].Image and Vision Computing, 2011, 29(9):607-619. doi: 10.1016/j.imavis.2011.07.002
    [16] ELSAYED A, MAHMOOD A, SOBH T.Effect of super resolution on high dimensional features for unsupervised face recognition in the wild[C]//2017 IEEE Applied Imagery Pattern Recognition Workshop(AIPR).Piscataway: IEEE Press, 2017: 1-5.
    [17] WANG P Y, SU F, ZHAO Z C.Joint multi-feature fusion and attribute relationships for facial attribute prediction[C]//2017 IEEE Visual Communications and Image Processing (VCIP).Piscataway: IEEE Press, 2017: 1-4.
    [18] TAHERKHANI F, NASRABADI N M, DAWSON J.A deep face identification network enhanced by facial attributes prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2018: 553-560.
    [19] KUO C M, LAI S H, MICHEL S.A compact deep learning model for robust facial expression recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2018: 2121-2129.
    [20] YANG J, ZHANG F, CHEN B, et al.Facial expression recognition based on facial action unit[C]//2019 10th International Green and Sustainable Computing Conference (IGSC).Piscataway: IEEE Press, 2019: 1-6.
    [21] YU K, SALZMANN M.Second-order convolution neural networks[J].Clinical Immunology & Immunopathology, 2017, 66(3):230-238.
    [22] GAO Z, XIE J, WANG Q, et al.Global second-order pooling convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway: IEEE Press, 2019: 3024-3033.
    [23] HUANG Z, LUC V G.A Riemannian network for SPD matrix learning[C]//31st AAAI Conference on Artificial Intelligence.San Francisco: AAAI Press, 2017: 2036-2042.
    [24] ACHARYA D, HUANG Z, PAUDEL D P, et al.Covariance pooling for facial expression recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway: IEEE Press, 2018: 367-374.
    [25] HAMESTER D, BARROS P, WERMTER S.Face expression recognition with a 2-channel convolutional neural network[C]//2015 International Joint Conference on Neural Networks (IJCNN).Piscataway: IEEE Press, 2015: 1-8.
    [26] MOLLAHOSSEINI A, CHAN D, MAHOOR M H.Going deeper in facial expression recognition using deep neural networks[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV).Piscataway: IEEE Press, 2016: 1-10.
    [27] CHEN Y, HU H.Facial expression recognition by inter-class relational learning[J].IEEE Access, 2019, 7:94106-94117. doi: 10.1109/ACCESS.2019.2928983
    [28] LIU M, LI S, SHAN S, et al.Deeply learning deformable facial action parts model for dynamic expression analysis[C]//Asian Conference on Computer Vision(ACCV).Berlin: Springer, 2014: 143-157.
    [29] NGUYEN D H, KIM S H, LEE G S, et al.Facial expression recognition using a temporal ensemble of multi-level convolutional neural networks[EB/OL].(2019-10-10)[2020-02-20].
    [30] MONTAVON G, ORR G B, MULLER K R.Neural networks:Tricks of the trade[M].Berlin:Springer, 1998:9-50.
    [31] XIE S Y, GIRSHICK R, DOLLAR P, et al.Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2017: 1492-1500.
    [32] SZEGEDY C, LIU W, JIA Y, et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2015: 1-9.
    [33] HUANG G, LIU Z, WEINBERGER K Q, et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2017: 4700-4708.
    [34] ULYANOV D, VEDALDI A, LEMPITSKY V.Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway: IEEE Press, 2017: 6924-6932.
    [35] PAN X, LUO P, SHI J, et al.Two at once: Enhancing learning and generalization capacities via IBN-net[C]//The European Conference on Computer Vision (ECCV).Berlin: Springer, 2018: 464-479.
    [36] EKMAN P, FRIESEN W V.Facial action coding system:A technique for the measurement of facial movement[M].Palo Alto:Consulting Psychologists Press, 1978:32-96.
    [37] HE K, ZHANG X, REN S, et al.Identity mappings in deep residual networks[C]//The European Conference on Computer Vision.Berlin: Springer, 2016: 630-645.
    [38] QIN Z Y, WU J.Visual saliency maps can apply to facial expression recognition[EB/OL].(2018-11-12)[2020-02-20].
    [39] MIAO S, XU H Y, HAN Z Q, et al.Recognizing facial expressions using a shallow convolutional neural network[J].IEEE Access, 2019, 7:78000-78011. doi: 10.1109/ACCESS.2019.2921220
    [40] ZHOU J C, JIA X, SHEN L L, et al.Improved softmax loss for deep learning-based face and expression recognition[J].Cognitive Computation and Systems, 2019, 1(4):97-102. doi: 10.1049/ccs.2019.0010
    [41] TIAN Y, WEN Z W, XIE W C, et al.Outlier-suppressed triplet loss with adaptive class-aware margins for facial expression recognition[C]//2019 IEEE International Conference on Image Processing (ICIP).Piscataway: IEEE Press, 2019: 46-50.
    [42] XIE S Y, HU H F, WU Y B.Deep multi-path convolutional neural network joint with salient region attention for facial expression recognition[J].Pattern Recognition, 2019, 92:177-191. doi: 10.1016/j.patcog.2019.03.019
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  953
  • HTML全文浏览量:  252
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 录用日期:  2020-04-09
  • 网络出版日期:  2020-09-20

目录

    /

    返回文章
    返回
    常见问答