Region-based statistical signal processing scheme for image fusion
-
摘要: 针对多源图像融合问题,提出了一种在多分辨率框架下基于区域内灰度特征统计信号的融合算法.利用图像灰度特征的区域生长法对源图像进行区域分割,并以裂缝边缘作为特征区域的闭合边界,对源图像与分割结果的区域映射图作多分辨率变换.在图像低频部分,以联合区域映射图为指导,在区域内建立信号与噪声的高斯混合分布模型,利用期望极大化(EM,Expectation Maximization)算法迭代估计噪声模型分布参数,获得低频融合结果;在图像高频部分,根据系数在区域映射图上的位置差异分别采用窗口系数加权平均法和系数绝对值选大法进行融合,将低频和高频融合结果反变换得到最终融合图像.融合结果表明:该方法是可行和高效的,且比其他图像融合方法具有更好的性能.Abstract: A new image fusion scheme based on region statistical signal processing was proposed. The region growing technique using gray-level clustering was employed to segment the source images into different regions whose borderline represented with crack edge. The registered source images and their segmented mapping were decomposed into a multi-resolution representation with both low-frequency coarse information and high-frequency detail information respectively. The expectation maximization algorithm modeled with noise statistic distribution was used to fuse the low-frequency coarse information of the registered images,while the match and salience measures were applied to fuse the high-frequency detail information of the registered images. The final fused image was obtained by taking the inverse transform of the composite multi-resolution representations information. Fusion experiments on real world images indicate that the proposed method is effective and efficient, which achieves better performance than the most generic fusion method.
-
Key words:
- image fusion /
- region growing /
- crack edge /
- expectation maximization /
- multi-resolution framework
-
[1] 杨晓慧,金海燕,焦李成.基于DT-CWT的红外与可见光图像自适应融合[J].红外与毫米波学报,2007,26(6):419-424 Yang Xiaohui,Jin Haiyan,Jiao Licheng.Adaptive image fusion algorithm for infrared and visible light images based on DT-CWT [J].Journal of Infrared Millimeter Waves,2007,26(6):419-424(in Chinese) [2] 李小娟,赵巍.一种基于多尺度边缘的图像融合算法[J].北京航空航天大学学报,2007,33(2):229-232 Li Xiaojuan,Zhao Wei.Image fusion a lgorithm based on multiscale edges[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(2):229-232(in Chinese) [3] 曹治国,王文武.应用统计信号和模糊数学的图像融合算法[J].光电工程,2005,5(32):73-75 Cao Zhiguo,Wang Wenwu.Image fusion algorithm based on statistical signal processing and fuzzy theory[J].Opto-Electronic Engineering,2005,5(32):73-75(in Chinese) [4] Lewis J J,Nikolov S G,Canagarajah C N,et al.Uni-modal versus joint segmentation for region-based image fusion // Willett P K.Ninth International Conference on Information Fusion (Fusion 2006).New York:Institute of Electrical and Electronics Engineers,2006(6):1-8 [5] Dempster A P,Larid N,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,Series B (Methodological),1977,1(39):1-38 [6] Yang Jinzhong,Blum R S.A region-based image fusion method using the expectation-maximization algorithm //Andrew Fitzgibbon.IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2006).Los Alamitos,Calif.:IEEE Computer Society,2006(3):468- 473 [7] Burt P J,Kolczynski R J.Enhanced image capture through fusion // IEEE Computer Society.Fourth International Conference On Computer Vision,Los Alamitos,Calif.:IEEE Computer Society,1993(5):173-182 [8] 葛雯,李丽娜,赵锐.基于小波提升机制的快速图像融合算法[J].科学技术与工程,2008,8(8):2249- 2252 Ge Wen,Li Lina,Zhao Rui.Fast image fusion method based on wavelet lifting mechanism[J].Science Technology and Engineering,2008,8(8):2249-2252(in Chinese)
点击查看大图
计量
- 文章访问数: 3624
- HTML全文浏览量: 201
- PDF下载量: 1737
- 被引次数: 0