Approach to modeling user interests using conceptual clustering
-
摘要: Internet资源的指数级增长促进了个性化服务的发展.针对传统的用户兴趣建模方法在准确率和增量处理能力方面的不足,提出了一种新的基于概念聚类的用户兴趣建模方法UIM2C2(User Interest Modeling Method based on Conceptual Clustering).该方法首先通过分析用户访问的历史文档构造后缀树结构,然后选择不同的相似度阈值,以不同的粒度合并基本簇.依据不同阈值条件下合并的基本簇之间的包含关系,生成用户的兴趣层次.UIM2C2方法是针对文档的一个增量式、无监督的概念学习方法,因此用户描述文件可以轻易的获取和更新.最后,通过数据集20NewsGroup上的实验验证了UIM2C2方法在兴趣预测方面的有效性.Abstract: The exponential increase of internet resources accelerated the development of effective personalization techniques. A new method for modeling user interest, named UIM2C2 (user interest modeling method based on conceptual clustering) was presented. The method analyzed documents that each user ever browsed and created a suffix tree. According to different pair-wise base cluster similarity thresholds, base clusters could be merged in the range of different granularity. Combining with the inclusion relation between merged base clusters under different granularity, an interest hierarchy was generated. UIM2C2 carried out incremental, unsupervised concept learning over Web documents so that user profiles could be acquired and updated easily. Experimental results prove the effectiveness of the method in Web page recommendation.
-
Key words:
- internet /
- information retrieval /
- interest prediction /
- user interest model
-
[1] Smyth Barry.A community-based approach to personalizing web search[J].Computer,2007,40(8):42-50 [2] Diaz Alberto,Gervas Pablo.User-model based personalized summarization[J].Information Processing and Management,2007,43(6):1715-1734 [3] Godoy Daniala,Amandi Analia.Modeling user interests by conceptual clustering[J].Information Systems,2006,31(4):247-265 [4] 林鸿飞,杨元生.用户兴趣模型的表示和更新机制[J].计算机研究与发展,2002,39(7):843-847 Lin Hongfei,Yang Yuansheng.The representation and update mechanism for user profile[J].Journal of Computer Research and Development,2002,39(7):843-847(in Chinese) [5] 吴晶.门户个性化兴趣挖掘与推荐服务研究 .北京:北京航空航天大学计算机学院,2007 Wu Jing.Research on interest mining and recommendation service in personalization on portal .Beijing:School of Computer Science and Technology,Beijing University of Aeronautics and Astronautics,2007(in Chinese) [6] Kim Hyoung R,Chan Philip K.Learning implicit user interest hierarchy for context in personalization //Proceedings of the 8th International Conference on Intelligent User Interfaces.New York:ACM,2003:101-108 [7] Zamir Oren,Etzioni Oren.Web document clustering:A feasibility demonstration //Proceedings of SIGIR'98.New York:ACM,1998:46-54 [8] Lang Ken.NewsWeeder:learning to filter netnews //Proceedings of the 12th International Conference on Machine Leaning.San Fransisco:Morgan Kaufmann,1995:331-339
点击查看大图
计量
- 文章访问数: 2881
- HTML全文浏览量: 133
- PDF下载量: 1624
- 被引次数: 0