Multilayer trajectory optimization design for surface-to-air missile based on global sensitivity equation method
-
摘要: 为了使防空导弹优化的弹道更有效的拦截目标,依据多层次法理论,以杀伤概率最大为目标,设计导弹中制导段弹道和末制导段时间参数.整个模型分为3层,第1层是导弹中制导段弹道,第2层是导弹末制导段,第3层是战斗部毁伤目标.将一个层次视为一个子系统,多层次弹道优化问题实质上就是多学科设计优化问题.采用全局灵敏度方程方法计算参数之间的敏度,在系统层进行优化,最终可得到杀伤概率最大的弹道.最后进行了拦截空地导弹目标的计算示例,并采用了均匀实验设计方法和BP神经网络以减小计算量.结果证明全局灵敏度方程是求解多层次弹道优化设计的有效方法.Abstract: A multilayer approach to the midcourse trajectory design and terminal phase time constants design for a surface-to-air missile to maximize the kill probability was presented. Three layers were discussed. The first layer represented the midcourse trajectory of the missile, the second layer represented the terminal homing phase, and the third layer was the warhead damaging process. A layer can be seen as a subsystem, the multilayer trajectory optimization problem is a essential multidisciplinary design optimization (MDO) problem. The global sensitivity equation (GSE) method was adopted to compute sensitivity derivatives with respect to design variables, which did optimization in system level and got the trajectory which maximizing the kill probability. At last a case of intercepting air-to-surface missile(ASM) was designed and optimized. Uniform design of experiments and BP neural network were used to avoid long time computing. The result is that GSE method is effetive for multilayer trajectory optimization design problem.
-
Key words:
- sensitivity analysis /
- multilayer /
- trajectory /
- optimization
-
[1] Phillips C A, Drake J C. Trajectory optimization for a SAM using a multi-tier approach .AIAA-94-4404, 1994 [2] Phillips C A, Drake J C. Trajectory optimization for a missile using a multitier approach[J].Journal of Spacecraft and Rockets, 2000, 37(5): 653-662 [3] 王振国,陈小前,罗文彩,等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006 Wang Zhenguo, Chen Xiaoqian, Luo Wencai, et al. Research on the theory and application of multidisciplinary design optimization of flight vehicles[M]. Beijing: National Defense Industry Press, 2006 (in Chinese) [4] Sobieszczanki-Sobieski J. Sensitivity of complex, internally coupled systems[J]. AIAA Journal, 1990, 28(1): 153-160 [5] 方卫国,郦正能. 基于全局敏度方程方法的飞机方案设计[J].航空学报, 1998, 19(3): 293-298 Fang Weiguo, Li Zhengneng. Aircraft scheme optimization design based on global sensitivity equation method[J].Acta Aeronautica et Astronautica Sinica, 1998, 19(3): 293-298 (in Chinese) [6] Zarchan P. Tactical and strategic missile guidance[M]. 3rd ed. Washington, DC: American Institute of Aeronautics and Astronautics Inc, 1998 [7] 斯维特洛夫В Г, 戈卢别夫И С.防空导弹设计[M].北京:中国宇航出版社, 2004: 42-44 Светлов В Г, Голубев И С. Air defense missile design[M]. Beijing: Chinese Astronautics Press, 2004: 42-44 (in Chinese) [8] 方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社, 2001 Fang Kaitai, Ma Changxing. Orthogonal and uniform design of experiments[M]. Beijing: Science Press, 2001 (in Chinese) 期刊类型引用(14)
1. 陈平平,陈家辉,王宣达,方毅,王锋. Dice系数前向预测的快速正交正则回溯匹配追踪算法. 电子与信息学报. 2024(04): 1488-1498 . 百度学术
2. 张峰,凌锦炜,刘叶楠,赵黎. 基于DFT-SAMP算法的MIMO-VLC系统压缩感知信道估计. 光子学报. 2023(04): 52-62 . 百度学术
3. 张家慧,王英志,李新格,沈亮. 一种改进型烟花重构算法及其在冲击波测试领域中的应用. 长春理工大学学报(自然科学版). 2022(02): 74-83 . 百度学术
4. 于立君,钟飞,王辉,原新. 基于纹理信息的图像重构实验项目改进算法设计. 实验技术与管理. 2021(05): 154-157+161 . 百度学术
5. 季策,王金芝,李伯群. 基于RSAMP算法的OFDM稀疏信道估计. 系统工程与电子技术. 2021(08): 2290-2296 . 百度学术
6. 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构. 吉林大学学报(工学版). 2021(06): 2246-2252 . 百度学术
7. 陶亮,刘海鹏,王蒙,董士谦. 基于回溯正则化的前向搜索正交匹配追踪算法研究. 陕西理工大学学报(自然科学版). 2020(02): 37-43 . 百度学术
8. 丁倩,胡茂海. 一种改进的压缩感知重构算法. 红外技术. 2019(04): 364-369 . 百度学术
9. 丁佳静,武雪姣,李雪晴. 稀疏度自适应回溯追踪算法改进. 软件导刊. 2019(08): 59-62 . 百度学术
10. 江晓林,唐征宇,渠苏苏. 基于SWOMP分段回溯的压缩感知改进算法. 黑龙江科技大学学报. 2019(04): 501-505 . 百度学术
11. 肖沈阳,金志刚,苏毅珊,武晋. 压缩感知OFDM稀疏信道估计导频设计. 北京航空航天大学学报. 2018(07): 1447-1453 . 本站查看
12. 赵东波,李辉. 变步长SAMP算法在雷达目标识别中的应用. 控制工程. 2018(08): 1381-1385 . 百度学术
13. 李琪,张欣,张平康,张航. 阈值稀疏自适应匹配追踪图像重构算法. 小型微型计算机系统. 2018(11): 2528-2532 . 百度学术
14. 高宇轩,孙华燕,张廷华,都琳. 压缩编码孔径成像重构算法. 兵器装备工程学报. 2017(10): 191-196 . 百度学术
其他类型引用(8)
-

计量
- 文章访问数: 3363
- HTML全文浏览量: 71
- PDF下载量: 902
- 被引次数: 22