留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义多圈Lambert算法求解多脉冲最优交会问题

童科伟 周建平 何麟书 张丽艳

童科伟, 周建平, 何麟书, 等 . 广义多圈Lambert算法求解多脉冲最优交会问题[J]. 北京航空航天大学学报, 2009, 35(11): 1398-1402.
引用本文: 童科伟, 周建平, 何麟书, 等 . 广义多圈Lambert算法求解多脉冲最优交会问题[J]. 北京航空航天大学学报, 2009, 35(11): 1398-1402.
Tong Kewei, Zhou Jianping, He Linshu, et al. Generalized multiple-revolution Lambert algorithm for solving multiple-impulse rendezvous problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1398-1402. (in Chinese)
Citation: Tong Kewei, Zhou Jianping, He Linshu, et al. Generalized multiple-revolution Lambert algorithm for solving multiple-impulse rendezvous problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1398-1402. (in Chinese)

广义多圈Lambert算法求解多脉冲最优交会问题

详细信息
    作者简介:

    童科伟(1982-),男,湖南常德人,博士生,tongkewei@126.com.

  • 中图分类号: V 412.4+1

Generalized multiple-revolution Lambert algorithm for solving multiple-impulse rendezvous problem

  • 摘要: 基于一种高效高精度的Battin多圈Lambert算法提出一种考虑轨道摄动的广义多圈Lambert算法.与现有算法相比,本算法虽然原理复杂但计算流程非常简单,效率极高,分别通过几次内外循环就可满足精度要求.广义多圈Lambert算法结合一种可行解迭代交会模型构成了一个通用的多圈多脉冲交会规划框架,应用两步法求解此多变量的复杂工程优化问题,首先利用高效率的进化全局优化算法以及解析轨道模型作全局搜索,然后利用序列二次规划算法以及简化高精度轨道计算模型作局部搜索,此方法可以保证高效高精度的求解多圈多脉冲交会问题.算例表明此方法特别适用于满足实际工程约束的交会规划问题.

     

  • [1] Battin R H. An introduction to the mathematics and methods of astrodynamics[M].New York: AIAA, 1987:237-342 [2] 韩潮,谢华伟. 空间交会中多圈Lambert变轨算法研究[J]. 中国空间科学技术, 2004, 24(5): 9-14 Han Chao, Xie Huawei. Research on algorithm of loopy Lambert transfer in space rendezvous[J].Chinese Space Science and Technology, 2004, 24(5): 9-14 (in Chinese) [3] 卢山,陈统,徐世杰. 基于自适应模拟退火遗传算法的最优Lambert转移[J].北京航空航天大学学报, 2007, 33(10): 1191-1195 Lu Shan, Chen Tong, Xu Shijie. Optimal Lambert transfer based on adaptive simulated annealing genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1191-1195(in Chinese) [4] Loechler L A. An elegant Lambert algorithm for multiple revolution orbits .Massachusetts: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1988 [5] Shen H J, Tsiotras P. Optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):50-61 [6] Prussing J E. A class of optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].The Journal of the Astronautical Sciences, 2000, 48(2):131-148 [7] Shen H J. Optimal scheduling for satellite refuelling in circular orbits .Georgia: School of Aerospace Engineering, Georgia Institute of Technology, 2003 [8] Hughes S P, Mailhe L M, Guzman J J. A comparison of trajectory optimization methods for the impulsive minimum fuel rendezvous problem[J].Advances in the Astronautical Sciences, 2003, 113:85-104 [9] Luo Yazhong, Tang Guojing, Lei Yongjun, et al. Optimization of multiple-impulse multiple-revolution rendezvous phasing maneuvers[J].Journal of Guidance, Control, and Dynamics, 2007, 30(4):946-952 [10] Xie Xiaofeng, Zhang Wenjun. Solving engineering design problems by social cognitive optimization Kalyanmov D, Riccardo P.Genetic and Evolutionary Computation Conference. Berlin:Springer, 2004:261-262 [11] 童科伟,周建平,何麟书.近地卫星简化轨道预报方法研究[J].宇航学报,2009,30(4):1327-1333 Tong Kewei, Zhou Jianping, He Linshu. A reduced orbit propagation model of low-earth orbit satellite[J].Journal of Astronautics, 2009, 30(4):1327-1333(in Chinese)
  • 加载中
计量
  • 文章访问数:  2915
  • HTML全文浏览量:  198
  • PDF下载量:  1527
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-07
  • 网络出版日期:  2009-11-30

目录

    /

    返回文章
    返回
    常见问答