留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含磷聚酰亚胺的合成与抗原子氧性能

苏英霞 王 凯 詹茂盛

苏英霞, 王 凯, 詹茂盛等 . 含磷聚酰亚胺的合成与抗原子氧性能[J]. 北京航空航天大学学报, 2009, 35(7): 807-811.
引用本文: 苏英霞, 王 凯, 詹茂盛等 . 含磷聚酰亚胺的合成与抗原子氧性能[J]. 北京航空航天大学学报, 2009, 35(7): 807-811.
Su Yingxia, Wang Kai, Zhan Maoshenget al. Synthesis and atomic oxygen resistance of phosphorus-containing polyimide[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 807-811. (in Chinese)
Citation: Su Yingxia, Wang Kai, Zhan Maoshenget al. Synthesis and atomic oxygen resistance of phosphorus-containing polyimide[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 807-811. (in Chinese)

含磷聚酰亚胺的合成与抗原子氧性能

基金项目: 中国航天科技集团公司航天科技创新基金资助项目; 国家自然科学基金资助项目(50803003)
详细信息
    作者简介:

    苏英霞(1984-),女,河北石家庄人,硕士生,wangkai@buaa.edu.cn.

  • 中图分类号: V 255

Synthesis and atomic oxygen resistance of phosphorus-containing polyimide

  • 摘要: 利用自行合成的含磷芳香族二胺单体——二(3-氨基苯基)苯基氧化磷(DAPPO),制备了一系列含磷聚酰亚胺薄膜.在原子氧地面模拟设备中对该薄膜进行了原子氧暴露实验,并采用场发射扫描电子显微镜(FE-SEM)和X射线光电子能谱(XPS)等分析手段对原子氧暴露前后薄膜表面的聚集态结构和化学结构演化进行了分析.结果表明,原子氧暴露后,引入含磷二胺单体的聚酰亚胺薄膜表面形成了富磷保护层,剥蚀率减小,抗原子氧性能明显提高, 磷质量分数为5.47%的聚酰亚胺薄膜在原子氧作用20h的总剥蚀率分别降低为Kapton和Upliex-R型聚酰亚胺的13%和20%.

     

  • [1] 多树旺,李美拴,张亚明,等.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层[J].腐蚀科学与防护技术, 2002,14(3):152-156 Duo Shuwang, Li Meishuan, Zhang Yaming, et al. Atomic oxygen attack on space materials in LEO environment and protective coatings[J]. Corrosion Science and Protection Technology, 2002, 14(3): 152-156 (in Chinese) [2] Bruce A B, Kim K de G, Sharon K M. Low earth orbital atomic oxygen interactions with spacecraft materials . NASA/TM-2004-213400, 2004  [3] Gittemeier K. Low earth orbit environmental effects on space tether materials . Alabama: The Department of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, 2005 [4] Leger L, Visentine J, Santos-Mason B. Selected materials issues associated with space station[J]. SAMPE Quarterly, 1987, 18(2): 48-54 [5] 湛永钟,张国定.低地球轨道环境对材料的影响[J].宇航材料工艺,2003(1):1-5,23 Zhan Yongzhong, Zhang Guoding. Low earth orbit environmental effects on materials[J]. Aerospace Materials and Technology, 2003(1): 1-5,23 (in Chinese) [6] 盛磊.原子氧环境对聚合物及其复合材料性能的影响[J].中国空间科学技术,1994(5):54-61 Sheng Lei. Effects of polymer and composites properties by atomic oxygen exposure[J]. Chinese Space Science and Technology, 1994(5): 54-61 (in Chinese) [7] 丁孟贤.聚酰亚胺—化学、结构与性能的关系及材料[M].北京:科学出版社,2006:1-7 Ding Mengxian. Polymides: chemistry, relationship between structure and properties and materials[M]. Beijing: Science Press, 2006:1-7 (in Chinese) [8] 童靖宇,刘向鹏,孙刚,等.原子氧/紫外综合环境模拟实验与防护技术[J].真空科学与技术学报,2006,26(4):263-267 Tong Jingyu, Liu Xiangpeng, Sun Gang, et al. Simulation of combined environment of atomic oxygen and ultraviolet and development of protection technologies[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(4): 263-267 (in Chinese) [9] 刘向鹏,童靖宇,李金洪.航天器薄膜材料在原子氧环境中退化研究[J].航天器环境工程,2006,23(1):39-41,59 Liu Xiangpeng, Tong Jingyu, Li Jinhong. Study on the degradation of spacecraft film material due to AO interaction[J]. Spacecraft Environment Engineering, 2006, 23(1): 39-41, 59 (in Chinese) [10] Devapal D, Packirisamy S, Korulla R M, et al. Atomic oxygen resistant coating from poly (tetramethyldisilylene co-styrene)[J]. Journal of Applied Polymer Science, 2004, 94(6): 2368-2375 [11] Wang Xin, Zhao Xiaohu. The effects of atomic oxygen on polyimide resin matrix composite containing nano-silicon dioxide[J]. Nuclear Instruments and Methods in Physics Research B, 2006, 243(2): 320-324 [12] Duo Shuwang, Li Meishuan. Resistance of polyimide/silica hybrid films to atomic oxygen attack[J]. Surface & Coatings Technology, 2006, 200(24): 6671-6677 [13] Ryo T. A polyimide nanocomposite from octa(aminophenyl) silsesquioxane[J]. Chem Mater, 2003,15(3):793-797 [14] Rene I G, Sandra J T, Timothy K M, et al. Synthesis and atomic oxygen erosion testing of space-survivable POSS (polyhedral oligomeric silsesquioxane) polyimides . NASA/TM-2003-0801109, 2003  [15] Phillips H S, Haddad S T, Tomczak J S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers[J]. Current Opinion in Solid State and Materials Science, 2004, 8:21-29  [16] Wright M E, Petteys B J, Guenthner A J, et al. Chemical modification of fluorinated polyimides: new thermally curing hybrid polymers with POSS[J]. Macromolecules, 2006, 39: 4710-4718  [17] Illingsworth M L, Banks B A. Zr-containg 4-4--ODA/PMDA polyimide composites . NASA/TM-2001-211099, 2001 [18] Watson K A, Palmieri F L, Connell J W. Space environmentally stable polyimides and copolyimides derived from diphenyl-phosphine oxide [J]. Macromolecules, 2002, 35: 4968-4974  [19] John W C, Kent A W. Polyimides containing fluoring and phosphorus for potential space applications . NASA-2000-fp-jwc, 2000 [20] Kent A W, John W C. Space environmentally stable polyimides and copolyimides . NASA -2000-45Sampe Kaw, 2000 [21] Liu Y, Hsiue G, Lee R, et al. Phosphorus-containing epoxy for flame retardant III: using phosphorylated diamines as curing agents[J]. Journal of Applied Polymer Science, 1997, 63(7):895-900
  • 加载中
计量
  • 文章访问数:  3786
  • HTML全文浏览量:  149
  • PDF下载量:  1416
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-04
  • 网络出版日期:  2009-07-31

目录

    /

    返回文章
    返回
    常见问答