Calculation of thermal load and impact factor analysis for hypersonic vehicle
-
摘要: 对吸热式热防护系统和液氮为冷源的高超声速飞行器热控系统,分别采用辐射热平衡法和双层集总参数法,建立了隔热层和舱内温度场的热力学模型,实现了气动加热、隔热层导热及舱内温度场等各传热环节的解耦.在此基础上,按照X-34验证机的飞行剖面对高超声速飞行器电子设备舱热载荷进行了计算,并分析了隔热层厚度、舱内冷却气体流速及液氮量对舱内温度和电子设备温度的影响.结果表明,该方法对热传递过程各环节响应特性能够较准确的分析,在工程方案初步设计阶段具有重要的应用价值.Abstract: Endothermal thermal protection system (TPS) and liquid N2 heat sink were chosen to calculate the characteristics of thermal control system (TCS) in hypersonic vehicle. The methods of radiation balance and double lumped parameter were adopted to obtain the thermodynamic model of adiabatic layer and cabin air temperature. Therefore, aeroheating, adiabatic layer heat transfer and cabin air temperature were decoupled. On the basis of flight profile of X-34 hypersonic vehicle, the thermal load of avionics bay was calculated. Besides, the influence of adiabatic layer, cooling gas velocity and liquid N2 amount on cabin air as well as the equipment temperature were analyzed. The results show that this method could get the response characteristics of heat transfer sections, which played an important part in the primary stage of hypersonic vehicle design.
-
Key words:
- hypersonic flow /
- vehicle /
- thermal control system /
- thermal protection system /
- thermal load
-
[1] 范绪箕.气动加热与热防护系统[M].北京:科学出版社,2004: 75-129 Fan Xuji. Aeroheating and thermal protection system[M]. Beijing: Science Press, 2004: 75-129(in Chinese) [2] 王浚,王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134 Wang Jun, Wang Peiguang. Integrated thermal protection and control design methodology for hypersonic vehicles[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10):1129-1134(in Chinese) [3] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998:71-80 Yang Shiming, Tao Wenquan. Heat transfer[M]. Beijing: China Higher Education Press, 1998:71-80(in Chinese) [4] 李运泽,魏传锋,袁领双,等. 卫星热控系统的动态特性建模与仿真[J]. 北京航空航天大学学报, 2005, 31(3):372-374 Li Yunze, Wei Chuanfeng, Yuan Lingshuang, et al. Dynamical modeling and simulation of satellite thermal control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 372-374(in Chinese) [5] Kleb W L, Wood W A, Gnoffo P A. Computational aeroheating predictions for X-34 . AIAA-98-0879, 1998 [6] Wurster K E, Riley C J, Zoby E V. Engineering aerothermal analysis for X-34 thermal protection design . AIAA-98-16690, 1998 [7] Brauckmann G J. X-34 vehicle aerodynamic characteristics . AIAA-98-32431, 1998 [8] Tang Lei, Wei Shyy, Utturkar Y, et al. Proper orthogonal decomposition and response surface method for TPS/RLV structural design and optimization: X-34 case study . AIAA-2005-839, 2005 [9] Riley C J, Kleb W L. Aeroheating predictions for X-34 using an inviscid-boundary layer method . AIAA-98-0880, 1998
点击查看大图
计量
- 文章访问数: 4236
- HTML全文浏览量: 164
- PDF下载量: 1086
- 被引次数: 0