留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于N元语法分布的语言模型自适应方法

尹继豪 姜志国 樊孝忠

尹继豪, 姜志国, 樊孝忠等 . 一种基于N元语法分布的语言模型自适应方法[J]. 北京航空航天大学学报, 2008, 34(11): 1276-1279.
引用本文: 尹继豪, 姜志国, 樊孝忠等 . 一种基于N元语法分布的语言模型自适应方法[J]. 北京航空航天大学学报, 2008, 34(11): 1276-1279.
Yin Jihao, Jiang Zhiguo, Fan Xiaozhonget al. Statistical language model adaptation based on N-gram distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1276-1279. (in Chinese)
Citation: Yin Jihao, Jiang Zhiguo, Fan Xiaozhonget al. Statistical language model adaptation based on N-gram distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1276-1279. (in Chinese)

一种基于N元语法分布的语言模型自适应方法

基金项目: 教育部博士点基金资助项目(20050007023)
详细信息
    作者简介:

    尹继豪(1980-),男,河南叶县人,讲师,yjh@buaa.edu.cn.

  • 中图分类号: TP 391

Statistical language model adaptation based on N-gram distribution

  • 摘要: N元语法分布能恰当地描述语料库的特性,为了有效利用普通领域训练数据,提出一种基于N元语法分布的语言模型自适应方法.该方法定义一个小的领域内的高质量种子集和一个大的普通领域的质量不稳定的训练集,将训练集的N元语法分布自适应到和种子集的N元语法分布相似,以更好地进行特定领域单词识别.实验结果表明,基于N元语法分布的语言模型自适应方法可以使单词困惑度和词错误率分别比传统的简单插值法降低11.1%和6.9%.

     

  • [1] Jelinek F. Self-organized language modeling for speech recognition // Readings in Speech Recognition. Morgan-Kaufmann, CA: San Mateo, 1990: 450-506 [2] Miller D, Leek T, Schwartz RM. A hidden Markov model information retrieval system //Proceedings of 22nd International Conference on Research and Development in Information Retrieval. USA: Berkeley, 1999: 214-221 [3] Kim W. Language model adaptation for automatic speech recognition and statistical machine translation . USA: Department of Computer Science, Johns Hopkins University, 2004 [4] Iyer R, Ostendorf M, Gish H. Using out-of-domain data to improve in-domain language models[J]. IEEE Signal Processing Letters, 1997, 4(8): 221-223 [5] Rosenfeld R. A maximum entropy approach to adaptive statistical language model[J]. Computer Speech & Language, 1996, 10: 187-228 [6] Jurafsky D, Martin J H. Speech and language processing: an introduction to natural language processing, computational linguistics and speech recognition[M]. USA: Prentice Hall, 2000 [7] Katz S M. Estimation of probabilities from sparse data for the language model component of a speech recognizer[J]. IEEE Transaction Acoustics, Speech and Signal Processing, 1987, 35(3): 400-401 [8] Wu Genqing, Zheng Fang, Wu Wenhu. Improved Katz smoothing for language modeling in speech recognition //International Conference on Spoken Language Processing 2002. USA: Colorado, 2002: 925-928 [9] Manning C D, Sch tze H. Foundation of statistical natural language processing[M]. USA: The MIT Press, 1999 [10] Katz S M. Distribution of content words and phrases in text and language modeling[J]. Natural Language Engineering, 1996, 2: 15-59
  • 加载中
计量
  • 文章访问数:  2878
  • HTML全文浏览量:  224
  • PDF下载量:  1939
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-11-29
  • 网络出版日期:  2008-11-30

目录

    /

    返回文章
    返回
    常见问答