Paradox of set theory-universal logic
-
摘要: 对于一类 n(2≤n≤n) 值逻辑可以给出一个一般形式的形式语言,通过一个六元组的模型,可以递归地定义出该形式语言中的公式的值.这构成了刻画这类逻辑的一个泛逻辑系统 UL 1.在该系统中,可以定义出抽象否定、抽象蕴涵和抽象等值等联结词,它们分别是二值逻辑中的联结词否定、蕴涵和等值的一般化.利用这些联结词,可以给出Russell型造集谓词、Curry型造集谓词的一般形式.此外,还提出了一种新型造集谓词,这种造集谓词只包含等值联结词,而不涉及其它联结词.通过这3种造集谓词,利用该系统的逻辑工具,证明了在通常的有穷值逻辑、可数无穷值逻辑和不可数无穷值逻辑系统中,概括原则都将导致悖论.Abstract: A general formal language in which the value of formulas can be recursively defined can be given by a sextuple-model for n(2≤n≤n )-valued logic. It constitutes a universal logic system UL 1, which characterizes this kind of logic. Connectives like abstract negation, abstract implication and abstract equivalence can be defined in the system. They are the generalization of negation, implication and equivalence in two valued logic. Applying these connectives, the general forms of Russellian sets-making predicate and Curryian sets-making predicate were developed. In addition, a new type of set-making predicate which only contains equivalence was developed. Applying these three kinds of sets-making predicates, abstraction principle led to paradoxes in general system of finite valued logic, countable infinite valued logic and uncountable infinite valued logic.
-
Key words:
- abstraction principle /
- universal logic /
- uncountable infinite valued logic /
- paradox
-
[1] Meyer R K, Routley R, Dunn J M. Curry’s paradox[J]. Analysis,1979,39:124-128 [2] Moh Shaw-Kwei. Logic paradox for many-valued systems[J]. The Journal of Symbolic Logic,1954,19:37-40 [3] 朱梧槚.数学与无穷观的逻辑基础[M].大连:大连理工大学出版社, 2008:107-123 Zhu Wujia. Logical foundation of mathematics and infinity[M]. Dalian: Dalian University of Technology Press,2008:107-123(in Chinese) [4] 杜国平.经典逻辑与非经典逻辑基础[M].北京:高等教育出版社, 2006 Du Guoping. The basis of classical logic and non-classical logic[M]. Beijing: Higher Education Press, 2006(in Chinese)
点击查看大图
计量
- 文章访问数: 3139
- HTML全文浏览量: 194
- PDF下载量: 1044
- 被引次数: 0