Gram-Schmidt regression and application in cutting tool abrasion prediction
-
摘要: 多元线性回归是一种应用广泛的统计分析方法.在实际应用中,当自变量集合存在严重多重相关性时,普通最小二乘方法就会失效.为解决这一问题,利用Gram-Schmidt 正交变换,提出一种新的多元线性回归建模方法——Gram-Schmidt回归.该方法可实现多元线性回归中的变量筛选,同时也解决了自变量多重相关条件下的有效建模问题.将该方法应用于机械加工过程中刀具磨损的预报分析,有效地进行了变量筛选,并得到了解释性强同时拟合优度也很高的模型结果.
-
关键词:
- Gram-Schmidt正交变换 /
- 多元线性回归 /
- 多重相关性 /
- 刀具磨损 /
- 预测
Abstract: Multiple linear regression is one of the most widely applied statistical methods in scientific research fields. However, the ordinary least squares method will be invalid when the independent variables set exists server multicolinearity problem. A new multiple linear regression method, named Gram-Schmidt regression, was proposed by the use of Gram-Schmidt orthogonal transformation in the modeling process. Not only can it screen the variables in multiple linear regression, but also provide a valid modeling approach under the condition of server multicolinearity. The method was applied to the prediction of the flank wear of cutting tool in the turning operation. The results demonstrate that the variable screening is reasonable and the model is highly fitted. -
[1] Hoerl A E.Application of ridge analysis to regression problems[J].Chemical Engineering Progress, 1962,58:54-59 [2] Neter J, Wasserman W, Kutner M H. Applied linear regression models[M].New York:Richard D Irwin Inc,1983 [3] Wold S, Martens H, Wold H. The multivariate calibration problem in chemistry solved by the PLS method Ruhe A, Kgstrm B.Proc Conf Matrix Pencils, Lectures Notes in Mathematics. Heidelberg:Springer-Verlag, 1983 [4] Tenenhaus M. La régression PLS théorie et pratique[M]. Paris:Editions Technip,1998 [5] Jain S K, Gunawardena A D. Linear algebra:an interactive approach[M].Beijing:China Machine Press,2003 [6] Lazraq A, Cleroux R, Gauchi J P. Selecting both latent and explanatory variables in PLS1 regression model [J]. Chemometrics and Intelligent Laboratory Systems,2003,66:117-126 [7] 刘强,尹力.一种简化递推偏最小二乘建模算法及其应用[J].北京航空航天大学学报,2003,29(7):640-643 Liu Qiang, Yin Li. Study on an improved recursive partial least-squares modeling approach and application[J]. Journal of Beijing University of Aeronautics and Astronautics,2003,29(7):640-643(in Chinese)
点击查看大图
计量
- 文章访问数: 2800
- HTML全文浏览量: 110
- PDF下载量: 798
- 被引次数: 0