Numerical simulation of airfoil transonic viscous flow using GAO-YONG turbulence model
-
摘要: 应用GAO-YONG可压缩湍流模式,数值模拟了NACA0012,RAE2822翼型的定常跨音速粘流算例.对流项采用三阶ROE格式,扩散项采用二阶中心格式,用多步Runge-Kutta显式时间推进法求解空间离散后的控制方程.计算结果很好地预测了翼型表面的压力系数的分布、激波的位置、马赫数等值线的分布等情况,并且对翼型表面激波与边界层相互干扰以及层流向湍流的转捩问题进行了分析计算.计算结果与实验值符合很好,表明GAO-YONG可压缩湍流模式应用合适的计算方法能够高精度模拟翼型跨音粘性流动问题,并且基于GAO-YONG可压缩湍流模式各向异性湍流粘性的机理,提供了一种预测转捩起始位置的判别方法.
-
关键词:
- 可压缩流 /
- GAO-YONG湍流模式 /
- 激波 /
- 跨音流动 /
- 边界层
Abstract: Numerical simulation of transonic viscous flow around NACA0012 airfoil and RAE2822 airfoil based on Gao-Yong compressible turbulence model were presented. The convection term and the diffusion term were discretized by the third-order ROE scheme and the second-order center difference(CD) scheme respectively. The Runge-Kutta time marching method was applied to solve the space discrete control equations. The calculations accurately predict distribution of pressure coefficient on the airfoil surface, location of shock wave and distribution of contour of the Mach number. Shock-wave/boundary layer interaction and translation from the laminar flow to the turbulence flow on the airfoil surface were analyzed. The numerical results agree with the experimental data very well. The results demonstrate that Gao-Yong compressible turbulence model has a powerful capability to accurately simulate transonic viscous flow around the airfoil. A method for forecasting location of translation based on theory of orthotropic turbulence viscosity in the Gao-Yong compressible turbulence model was presented.-
Key words:
- compressible flow /
- Gao-Yong turbulence model /
- shock waves /
- transonic flow /
- boundary layer
-
[1] Jacobs R G, Durbin P A. Simulations of bypass transition [J]. J Fluid Mech, 2001,433:185-212 [2] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes [J]. Journal of Computational Physics, 1981, 43:357-372 [3] 陈广业.GAO-YONG湍流模式在不可压/可压湍流边界层的数值研究 北京:北京航空航天大学动力工程学院,2002 Chen Guangye. The calculation of incompressible/compressible turbulence boundary layer using GAO-YONG turbulence equations . Beijing:School of Jet Propulsion, Beijing University of Aeronautics and Astronautics,2002 (in Chinese) [4] Gao Ge, Yan Yong.Partial-average-based equations of incompressible turbulent flow [J]. International Journal of Non-Linear Mechanics, 2004, 39:1407-1419 [5] Van Leer B.Towards the ultimate conservative difference scheme V:a second order sequel to godunov-s method[J]. Journal of Computational Physics, 1979(32):101-136 [6] Anderson W K, Thomas J L. Comparison of finite volume flux vector splitting for the euler equation[J]. AIAA Journal, 1986,24(9):1453-1460 [7] 刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995:125-128 Liu Chaoqun. The application of multigrid method in the computational fluid dynamics[M].Beijing:Tsinghua University Press, 1995:125-128(in Chinese) [8] 刘昕,邓小刚,毛枚良.高阶精度格式WCNS-E-5在亚跨声速流动中的应用研究[J].空气动力学报, 2005, 23 (4):425-430 Liu Xin, Deng Xiaogang, Mao Meiliang. Investigation of high-order accurate scheme WCNS-E-5 applied to subsonic and transonic flows[J]. Acta Aerodynamica Sinica, 2005, 23 (4):425-430(in Chinese) [9] 陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,1993:357-360 Chen Maozhang. Visious fluid dynamics[M].Beijing:Higher Education Press,1993:357-360(in Chinese) [10] Hellstrom T, Davidson L, Rizzi A. Reynolds stress transport modelling of transonic flow around the RAE2822 airfoil . AIAA 94-0309,1994
点击查看大图
计量
- 文章访问数: 2892
- HTML全文浏览量: 87
- PDF下载量: 15577
- 被引次数: 0