Forecasting method for aeroengine performance parameters
-
摘要: 航空发动机性能参数预测对于发动机的视情维修具有重要的意义.为了提高预测精度,在分析发动机性能参数数据特点的基础上,提出了一种新的应用于此领域的组合预测模型.首先利用小波变换将原始数据分解为不同尺度上的几组子序列,根据各子序列的特点分别选用自回归滑动平均(ARMA,Autoregressive Moving Average)模型或求和自回归滑动平均(ARIMA,Autoregressive Integrated Moving Average)模型进行预测,然后将所有预测结果合成,得到最终预测结果.通过仿真实验,验证了该组合模型提高短期和中长期预测精度的有效性,并分析了小波分解层数对于预测精度的影响.
-
关键词:
- 组合预测 /
- 自回归滑动平均模型 /
- 求和自回归滑动平均模型 /
- 排气温度裕度
Abstract: The forecasting of aeroengine performance parameters is very important for aeroengine maintenance based on condition. To improve the forecasting accuracy, a new combination method was proposed for forecasting parameters based on analyzing the data. Firstly, the original sequence was decomposed by wavelet transform and some sub-sequences in different frequency band were obtained. Then these sub-sequences were forecasted by ARMA/ARIMA respectively. Finally, the forecasting results of all sub-sequences were reconstructed and taken as the final forecasting result. Through the test, the proposed combination model was proved to be highly effective on improving the accuracy of the short-term and long-term forecasting, and the effect of wavelet decomposition levels on forecasting accuracy was analyzed. -
[1] 胡金海,谢寿生. 基于AR模型对滑油中金属元素含量的预测[J].燃气涡轮试验与研究,2003,16(1):32-36 Hu Jinhai,Xie Shousheng. AR model-based prediction of metal content in lubricating oil[J]. Gas Turbin Experiment and Reseach,2003,16(1):32-36(in Chinese) [2] Xu K, Xie M,Tang L C. Application of neural networks in forecasting engine systems reliability[J]. Applied Soft Computing,2003:255-268 [3] 王树明,夏国平.基于BP神经网络的飞行动态实时预测方法[J].北京航空航天大学学报,2001,27(6):636-639 Wang Shuming, Xia Guoping. Method of flying dynamic read-time forecast based-on BP neural network[J].Journal of Beijing University of Aeronautics and Astronautics,2001,27(6):636-639(in Chinese) [4] 付尧明.民用涡扇发动机在使用和维护中的EGT裕度管理[J].航空工程与维修,2005,1:44-45 Fu Yaoming. Management of EGT margin of civil turofan in the use and mainteance[J]. Aviation Engineering & Mainteance,2005,1:44-45(in Chinese) [5] 杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999:64-70,95-97 Yang Fusheng. Project analysis and application of wavelet transformation[M]. Beijing: Science Press, 1999: 64-70, 95-97 (in Chinese) [6] Box G E P,Jenkins G M. Time series analysis-forecasting and control[M].San Francisco:Holden-Day Inc,1976:21-182 [7] 张树京,齐立心. 时间序列分析简明教程[M].北京:北方交通大学出版社,2003:66-83,112-116 Zhang Shujing,Qi Lixin. Time series analysis tutorial[M].Beijing:Northern Jiaotong University Press, 2003,9:66-83,112-116 (in Chinese)
点击查看大图
计量
- 文章访问数: 2545
- HTML全文浏览量: 147
- PDF下载量: 1760
- 被引次数: 0