留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DSI插值的三角网格质量优化

刘瑞刚 程丹 杨钦 龙翔

刘瑞刚, 程丹, 杨钦, 等 . 基于DSI插值的三角网格质量优化[J]. 北京航空航天大学学报, 2008, 34(02): 162-166.
引用本文: 刘瑞刚, 程丹, 杨钦, 等 . 基于DSI插值的三角网格质量优化[J]. 北京航空航天大学学报, 2008, 34(02): 162-166.
Liu Ruigang, Cheng Dan, Yang Qin, et al. Triangle mesh optimization based on DSI interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 162-166. (in Chinese)
Citation: Liu Ruigang, Cheng Dan, Yang Qin, et al. Triangle mesh optimization based on DSI interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 162-166. (in Chinese)

基于DSI插值的三角网格质量优化

详细信息
    作者简介:

    刘瑞刚(1973-),男,河南清丰人,博士生,Liu_ruigang@163.com.

  • 中图分类号: TP 391.4

Triangle mesh optimization based on DSI interpolation

  • 摘要: 通过对三角网格的单元顶点进行几何位置调整,提高了网格的质量,实现了网格的质量优化.几何位置调整是使用离散点光滑插值(DSI,Discrete Smooth Interpolation)实现的,针对在计算时影响质量优化的邻接边界的单元顶点,采用了在边界处补偿三角形的方法,消除了单元收缩,提高了网格的质量.与加权拉普拉斯算法进行了比较和分析,优于拉普拉斯算法;为了使三角网格在位置调整时保持原始网格的几何细节特征,在插值算法中施加了控制点约束.最后使用算例对算法进行了验证.

     

  • [1] Hoppe H,DeRose T,Duchamp T,et al.Surface reconstruction from unorganized points[J]. Computer Graphics, 1992, 26(2): 71-78 [2] Chen X. Surface modeling of range data by constrained triangulation[J]. Computer Aided Design, 1994, 26(3):632-645 [3] 王群,李爱平,马淑梅.局部网格狭长三角形的品质改善及实现[J].同济大学学报(自然科学版),2004,32(11):1508-1511 Wang Qun, Li Aiping, Ma Shumei. Improvement and realization of quality of local-long-narrow triangular mesh[J]. Journal of Tongji University(Natural Science), 2004,32(11):1508-1511(in Chinese) [4] 苏从勇,庄越挺,黄丽,等.基于正交图像生成人脸模型的合成分析方法[J].浙江大学学报(工学版),2005,39(2):175-179 Su Congyong,Zhuang Yueting,Huang Li,et al.Analysis-by-synthesis approach for facial modeling based on orthogonal images[J]. Journal of Zhejiang University(Engineering Science), 2005,39(2):175-179(in Chinese) [5] Ruppert J. A delaunay refinement algorithm for quality 2-dimensional mesh generation[J]. Journal of Algorithm, 1995, 18(3): 458-585 [6] Jonathan Richard Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations Proceedings of the Fourteenth Annual Symposium on Computational Geometry.Minneapolis, Minnesota: ACM Press,1998, 76-85 [7] Rivara M C,Hitschfeld N,Simpson B. Termal-edges Delaunay(small-angle based) algorithm for the quality triangulation problem[J]. Computer Aided Design, 2001,33(2):263-277 [8] Leif Kobbelt,Swen Campagna,Jens Vorsatz,et al. Interactive multi-resolution modeling on arbitrary meshes Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Orlando: ACM Press, 1998, 105-114 [9] 彭芳瑜,周云飞,周济.基于广义能量法的曲面光顺[J].华中科技大学学报(自然科学版),2002,30(2):5-8 Peng Fangyu,Zhou Yunfei,Zhou Ji.Algorithm of surface smoothing based on extended energy minimization[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition),2002,30(2):5-8(in Chinese) [10] 李光明,田捷,何晖光,等.基于距离均衡化的网格平滑算法[J].计算机辅助设计与图形学学报,2002,14(9):820-823 Li Guangming,Tian Jie,He Huiguang,et al.A mesh smoothing algorithm based on distance equalization[J]. Journal of Computer-Aided Design & Computer Graphics, 2002,14(9):820-823(in Chinese) [11] Hoppe H,DeRose T,Duchamp T,et al.Mesh optimization[J].Computer Graphics,1993,27(1):19-26 [12] Mallet J L. Discrete smooth interpolation in geometric modeling[J]. ACM-Transactions on Graphics, 1989, 8(2):121-144 [13] Taubin G.A signal processing approach to fair surface design Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. Los Angeles, California: ACM Press, 1995, 351-358 [14] Mallet J L. Discrete smooth interpolation[J]. Computer Aided Design, 1992, 24(4):263–270 [15] Levy B, Mallet J L. Discrete smooth interpolation: constrained discrete fairing for arbitrary meshes The 19th Gocad Meeting. Inria Lorraine: , 1999
  • 加载中
计量
  • 文章访问数:  3939
  • HTML全文浏览量:  131
  • PDF下载量:  2049
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-15
  • 网络出版日期:  2008-02-29

目录

    /

    返回文章
    返回
    常见问答