High resolution finite element procedure for compressible flows simulation
-
摘要: 采用经典的Galerkin方法对N-S方程进行空间离散,再以该半离散格式作为基本格式,参照Kuzmin的思想加入耗散与反耗散项,使所构造的格式具有局部极值不增(LED,Local Extremum Diminishing)性质.对上述半离散格式进行时间离散后所导出的稀疏线性代数方程组,采用了GMRES(Generalized Minimal Residual)迭代法进行求解.为验证所建立的格式及相应的程序,给出了激波管问题和绕圆柱与双椭球超声速流动问题的数值模拟结果.Abstract: Spatial discretization of N-S equations was first deduced based on the classical Galerkin method. Taking the above semi-discretized formulation as the basic scheme, a diffusion and an associated anti-diffusion terms were then added, keeping the scheme to possess a local extremum diminishing (LED) property. After taking the time discretization of the above derived semi-discretized scheme, the resulting system of sparse linear algebraic equations was solved by utilizing generalized minimal residual(GMRES). In order to validate the developed scheme with associated code, numerical computations for the shock tube problems, as well as supersonic flows over a cylinder and a double ellipsoid were performed, which revealed that the developed scheme did provide high resolution results.
-
Key words:
- high-resolution schemes /
- finite elements /
- shock wave
-
[1] Cockburn B,Shu C W. The local discontinuos Galerkin method for time-dependent convection-diffusion systems[J]. SIAM J. Numer,Anal, 1998, 35:2440-2463 [2] 吴望一,蔡庆东.非结构网格上新型的NND有限元格式[J].空气动力学学报, 1998, 16(1):1-13 Wu Wangyi,Cai Qingdong. A new NND finite element scheme on unstructed grid[J]. Acta Aerodynamica Sinica, 1998,16(1):1-13(in Chinese) [3] 金生. FAP——流动分析通用有限元程序[J]. 大连理工大学学报, 1997, 37(6):687-692 Jin Sheng. FAP a general purpose flow analysis program[J].Journal of Dalian University of Technology,1997,37(6):687-692(in Chinese) [4] Kuzmin D, Lohner R,Turek S. Flux-corrected transport: principles, algorithms, and applications[M]. Berlin: Springer, 2005: 207-250 [5] Kuzmin D,Turek S. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter[J]. J Comp Phys, 2004, 198: 131-158 [6] Jameson A.Positive schemes and shock modeling for compressible flows[J]. Int J Numer Meth Fluids, 1995,20:743-776 [7] Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Sci Statist Comp 1986, 7: 856-869 [8] Chapman A, Saad Y, Wigto L. High order ILU preconditioners for CFD problems[J]. Int J Num Meth in Fluids, 2000, 33(6):767-788
点击查看大图
计量
- 文章访问数: 3214
- HTML全文浏览量: 125
- PDF下载量: 996
- 被引次数: 0