Optimization of energy absorption in high speed fluid-driven mechanism
-
摘要: 受流体驱动高速运动的机构,受阻后突然停止将导致零件变形甚至断裂.为得到缓冲结构的最佳方案,运用正交试验法从27种设计方案中确定了9个试验样本,并通过流固耦合与非线性有限元法对其高速运动与冲击过程进行了仿真分析.在此基础上,应用改进的BP(Error Back-Propagation)网络训练得到吸能结构参数与零件应变能的非线性映射关系.通过优化,得到了最佳方案,明显提高了方案优选效率.Abstract: For a high speed moving mechanism driven by fluid, abrupt stop resulted from barriers will lead to its large deformation, even fracture. To achieve optimum structural style and parametric matching of buffer members, nine test samples were selected out of twenty-seven design styles through orthogonal experiment method in advance. Their high-speed moving and impacting process were simulated by nonlinear finite element method(FEM) considering fluid structure interaction. On the basis of the above results, a modified error back-propagation(BP) network method was applied to train these samples, and obtained the nonlinear mapping relation between parameters of tubes for energy absorption and strain energy of crucial parts. The optimum structural parameters of buffer tube were determined, at the same time, the efficiency of schemes selection was improved obviously.
-
[1] Zhang G P, Huang Y M, Shi W H, et al. Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools & Manufacture, 2003, 43(6): 699–706 [2] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001 Fang Kaitai, Ma Changxing. Orthogonal and uniform experiments design [M]. Beijing: Science Press, 2001(in Chinese) [3] 何为,韩力群.基于神经元网络模型的系统参数优化设计方法[J].信息与控制,2001,30(6):562-565 He Wei, Han Liqun. Neural network modeling based method for optimizing product parameters [J]. Information and Control, 2001, 30(6): 562-565(in Chinese) [4] Karatasou S, Santamouris M, Geros V. Modeling and predicting building’s energy use with artificial neural networks: methods and results [J]. Energy and Buildings, 2006, 38: 949–958 [5] 董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005 Dong Changhong. Matlab neural network and application [M]. Beijing: Defense Industry Press, 2005 (in Chinese) 期刊类型引用(8)
1. 徐红,矫桂娥,张文俊,陈一民. 基于卷积神经网络的结构化非平衡数据分类算法. 计算机工程. 2023(02): 81-89 . 百度学术
2. 王萌铎,续欣莹,阎高伟,史丽娟,郭磊. 基于AdaBoost集成加权宽度学习系统的不平衡数据分类. 计算机工程. 2022(04): 99-105+112 . 百度学术
3. 张利剑,陈晋鹏. 基于扩展Jarvis-Patrick聚类的异常检测算法优化及检测仿真. 电子设计工程. 2022(13): 100-104 . 百度学术
4. 张伊扬,钱育蓉,陶文彬,冷洪勇,李自臣,马梦楠. 基于深度学习的属性图异常检测综述. 计算机工程与应用. 2022(19): 1-13 . 百度学术
5. 苏江军,董一鸿,颜铭江,钱江波,辛宇. 面向复杂网络的异常检测研究进展. 控制与决策. 2021(06): 1293-1310 . 百度学术
6. 陈波冯,李靖东,卢兴见,沙朝锋,王晓玲,张吉. 基于深度学习的图异常检测技术综述. 计算机研究与发展. 2021(07): 1436-1455 . 百度学术
7. 张建宁. 基于改进动态图算法的软件保护技术. 科技通报. 2021(08): 56-60 . 百度学术
8. 吴德胜,管媛辉. 移动互联网异常入侵行为下攻击意图预测仿真. 计算机仿真. 2018(12): 241-244 . 百度学术
其他类型引用(5)
-

计量
- 文章访问数: 4002
- HTML全文浏览量: 114
- PDF下载量: 953
- 被引次数: 13