Implementation of 32k points ultra high speed FFT processor based on FPGA devices
-
摘要: 采用FPGA(Field Programmable Gate Arrays)实现了一个超高速的32k点的流水线FFT(Fast Fourier Transform)处理器.FPGA的工作频率为125MHz,可以处理连续的1Gs/s(1 Giga-samples per second)的复数数据.该FFT处理器主要基于二维分解算法,采用MDF(Multi-path Delay Feedback)流水线结构,并结合MDC(Multi-path Delay Commutator)及SDF(Single-path Delay Feedback)结构的特点.处理器的内存资源消耗相对MDC结构有所减少,而运算速度相对SDF结构有所提高.建立了处理器的算法和设计模型,并根据模型对处理器的3个组成模块进行了优化以减小资源消耗.利用VHDL语言在Xilinx ISE工具上进行了设计,FPGA的布局布线结果验证了设计的可行性.Abstract: An ultra high speed 32k point pipelined fast Fourier transform (FFT) processor was designed with FPGA (field programmable gate arrays) implementation. The processor can operate at 125 MHz and is able to handle a continuous input complex data stream of 1 Giga-samples per second. The FFT processor is based on MDF(multi-path delay feedback) structure which combines the features of the SDF(single-path delay feedback) and MDC(multi-path delay commutator) architectures. The memory cost of the processor was decreased compared with the MDC architectures while the speed is higher than the SDF architectures. The algorithm and design model for the processor was established and the three modules of the processor according to the design model were optimized to decrease resource cost. The design was implemented with the the Xilinx ISE development tool using VHDL and was verified with the FPGA place and router results.
-
Key words:
- fast Fourier transforms /
- processor /
- field programmable gate arrays
-
[1] Benz1 A O, Grigis1 P C. A broadband FFT spectrometer for radio and millimeter astronomy[J]. Astronomy & Astrophysics, 2005,442(2): 767-773 [2] Zhong K, He H, Zhu G. An ultra high-speed FFT processor International Symposium on Signals, Circuits and Systems. Bangkok: , 2003: 37 - 40 [3] 谭征,张晓林.一种基于FPGA的超高速FFT处理器设计[J].遥测遥控,2005, 26(6): 46-49 Tan Zheng, Zhang Xiaolin. Design ultra high speed FFT processor based on FPGA[J]. Telemetry & Telecontrol, 2005, 26(6): 46-49 (in Chinese) [4] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. Englewood Cliffs,NJ:Prentice Hall, 1998 [5] 王旭东,刘渝.全并行结构FFT 的FPGA实现[J]. 南京航空航天大学学报, 2006, 38(2): 96-100 Wang Xudong, Liu Yu. Full parallel FFT based on FPGA[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(2): 96-100(in Chinese) [6] He S, Torkelson M. Designing pipeline FFT processor for OFDM (de)modulation International Symposium on Signals, Systems, and Electronics. New York: ,1998: 257-262 [7] Lin Y W, Liu H Y. A 1-Gs/s FFT/IFFT processor for UWB applications[J]. IEEE Journal of Solid-state Circuits, 2005, 40(8):1726-1735 期刊类型引用(8)
1. 徐红,矫桂娥,张文俊,陈一民. 基于卷积神经网络的结构化非平衡数据分类算法. 计算机工程. 2023(02): 81-89 . 百度学术
2. 王萌铎,续欣莹,阎高伟,史丽娟,郭磊. 基于AdaBoost集成加权宽度学习系统的不平衡数据分类. 计算机工程. 2022(04): 99-105+112 . 百度学术
3. 张利剑,陈晋鹏. 基于扩展Jarvis-Patrick聚类的异常检测算法优化及检测仿真. 电子设计工程. 2022(13): 100-104 . 百度学术
4. 张伊扬,钱育蓉,陶文彬,冷洪勇,李自臣,马梦楠. 基于深度学习的属性图异常检测综述. 计算机工程与应用. 2022(19): 1-13 . 百度学术
5. 苏江军,董一鸿,颜铭江,钱江波,辛宇. 面向复杂网络的异常检测研究进展. 控制与决策. 2021(06): 1293-1310 . 百度学术
6. 陈波冯,李靖东,卢兴见,沙朝锋,王晓玲,张吉. 基于深度学习的图异常检测技术综述. 计算机研究与发展. 2021(07): 1436-1455 . 百度学术
7. 张建宁. 基于改进动态图算法的软件保护技术. 科技通报. 2021(08): 56-60 . 百度学术
8. 吴德胜,管媛辉. 移动互联网异常入侵行为下攻击意图预测仿真. 计算机仿真. 2018(12): 241-244 . 百度学术
其他类型引用(5)
-

计量
- 文章访问数: 3125
- HTML全文浏览量: 132
- PDF下载量: 1924
- 被引次数: 13