Computation of shock wave/boundary-layer interactions with GAO-YONG turbulence equations
-
摘要: 采用GAO-YONG可压缩湍流方程组,模拟了平板激波/湍流边界层干扰现象.运用SIMPLE算法求解方程组,并分别采用三阶精度的QUICK格式和中心格式离散对流项和扩散项.计算结果较好预测了入射斜激波在平直壁面引起湍流附面层分离的流动特征: 分离点的反射激波、分离包引起的膨胀扇以及再附点的反射激波.对流场的时均参数与实验值进行了比较,计算得到的壁面压力分布、摩阻系数分布和速度型与实验值比较吻合很好.结果表明GAO-YONG可压缩湍流方程组能够高精度模拟平板激波/湍流边界层干扰流动.Abstract: Rational GAO-YONG compressible turbulence equations were applied to simulate numerically the flat plate shock wave/turbulent boundary layer interactions. The equations were solved using the semi-implicit method for pressure-linked equations (SIMPLE) algorithm. The discretization of convection and diffusion terms were respectively adopted quadratic upwind interpolation of convective kinematics(QUICK) scheme with third-order precision and center difference (CD) scheme.The calculational results predict well the flow characteristics of turbulent boundary layer separation induced by incident shock wave: a separation shock followed by expansion fan around separation bubble and shock in reattachment point.The computational results of the time-averaged parameters, such as the velocity profiles along the x-coordinate, pressure along the wall surface and skin-friction coefficient along the wall were compared with the experimental results. It is shown that when the GAO-YONG compressible turbulence equations are applied to the shock wave/turbulent boundary layer interacting cases, the basic feature and details of shock flows can be well simulated.
-
Key words:
- compressible flow /
- turbulence /
- shock waves /
- boundary layer
-
[1] Dolling D S. 50 Years of shock wave/boundary layer interaction research: what next [J]. AIAA Journal, 2001,39(8):1517-1531 [2] Liou William,Huang George.Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows[J]. Computers & Fluids ,2000 (29):275-299 [3] Thivet F. Lessons learned from RANS simulations of shock wave/boundary layer interactions. AIAA Paper 2002-0583,2002 [4] Hakkinen R J. The interaction of an oblique shock wave with a laminar boundary layer. NASA Memo 2-18-59w, 1959 [5] Gao Ge, Yong Yan. Partial-average-based equations of incompressible turbulent flow[J]. International Journal of Non-Linear Mechanics, 2004,39:1407-1409 [6] 陈懋章.粘性流体动力学基础[M]. 北京:高等教育出版社,1993:68-69 Chen Maozhang.Visious fluid dynamics[M].Beijing:Higher Education Press,1993:68-69(in Chinese) [7] 杨茉,李学恒,陶文铨.QUICK与多种差分方案的比较和计算[J].工程热物理学报,1999,20(5):593-597 Yang Mo,Li Xueheng,Tao Wenquan.Comparation and calculation among QUICK scheme and other diffential schemes[J].Journal of Engineering Thermophysics, 1999,20(5):593-597(in Chinese) [8] 陶文铨. 计算传热学的近代进展[M].北京: 科学出版社,2000 Tao Wenquan.The development of computational heat transfer[M].Beijing:Science Press,2000(in Chinese) [9] 闫超,陈靓.激波/边界层干扰数值模拟的格式效应[J].航空学报, 1996,17(7):193-196 Yan Chao,Chen Liang.Scheme effect in the simulation of shock wave/boubary layer interactions[J].Journal of Aeronautics, 1996,17(7):193-196(in Chinese) [10] 潘锦珊.气体动力学基础[M].北京:北京航空航天大学出版社,2002 Pan Jinshan.Basic aerodynamics[M].Beijing:Beijing University of Aeroncutics and Astronautics Press,2002(in Chinese) [11] Liou Mengsing.A Newton/upwind method and numerical study of shock wave/boundary layer interactions[J].International Journal for Numerical Methods in Fluids, 1989,9:747-761 [12] Wang Richards.TVD schemes for steady flow solution[J].Journal of Computational Physics ,1991,9:65-72
点击查看大图
计量
- 文章访问数: 3146
- HTML全文浏览量: 20
- PDF下载量: 1809
- 被引次数: 0