Vision-based runway obstacle detection scheme for unmanned combat aerial vehicles
-
摘要: 提出了基于视觉的无人作战飞机跑道障碍物检测方案.结合应用特征和流的障碍物检测方式的特点,使用多尺度特征点匹配光流估计方法代替普遍使用的微分光流计算方法,直接对图像序列计算稀疏光流场;利用相关假设,在存在一定导航误差的情况下,对跑道障碍物进行实时检测;同时对跑道障碍物视觉检测方案的误差和适用区间进行了分析;通过自主开发的"无人作战飞机自主着陆实时仿真验证平台"进行仿真,结果显示该方案能够有效检测跑道上存在的障碍物.Abstract: A computer-vision-based runway obstacle detection scheme for an unmanned combat air vehicle (UCAV) was presented. The scheme combined the advantages of the feature-based and the flow-based obstacle detection algorithms. Instead of using gradient-based method, a multi-scale optical flow estimation method based on feature point matching was adopted, which make it possible to calculate sparse optical flow field directly from image sequences. Under some relative hypothesis, obstacle on the runway could be detected even with certain navigation errors. The detection sensitivity and the stage applicable for obstacle detection were also discussed. The obstacle detection scheme can run properly on the real-time simulation system for autonomous landing of the UCAV.
-
Key words:
- unmanned combat air vehicle /
- computer vision /
- obstacle detection /
- optical flow /
- navigation system
-
[1] Sridhar B, Phatak A V. Analysis of image-based navigation system for rotorcraft low-altitude flight[J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(2): 290-299 [2] Boon K Q, Javier I G, Khiang W L. Feature detection for stereo-vision-based unmanned navigation IEEE Conference on Cybernetics and Intelligent Systems. Singapore: Institute of Electrical and Electronics Engineers Inc, 2004: 141-146 [3] Sull S, Sridhar B. Runway obstacle detection by controlled spatiotemporal image flow disparity[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3): 537-547 [4] Gandhi T, Devadiga S, Kasturi R, et al. Detection of obstacles on runways using ego-motion compensation and tracking of significant features[J]. Image and Vision Computing, 2000, 18(10): 805-815 [5] 陈磊,陈宗基.基于视觉的无人作战飞机自主着陆导航方案[J].北京航空航天大学学报, 2007, 33(2): 159-163 Chen Lei, Chen Zongji. Vision-based autonomous landing integrated navigation scheme of unmanned combat aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2): 159-163 (in Chinese) [6] Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision[M]. 2nd ed. : Brooks/Cole Publishing Company, 1999 [7] 陈磊,陈宗基.基于视觉的无人作战飞机自主着陆仿真系统研究[J].系统仿真学报, 2006, 18(7): 1815-1819 Chen Lei, Chen Zongji. Study on simulation system for vision-based autonomous landing of unmanned combat aerial vehicles[J]. Journal of System Simulation, 2006, 18(7): 1815-1819(in Chinese)
点击查看大图
计量
- 文章访问数: 3416
- HTML全文浏览量: 87
- PDF下载量: 1279
- 被引次数: 0