Localization for mobile node based on sequential Monte Carlo
-
摘要: 无线传感器网络中目标节点定位的准确性与定位频次对跟踪与监视精度有着重要的影响.为了提高目标跟踪精度,需要研究高效的网络节点定位算法.在分析传统基于Bayesian估计过程定位的基础上,讨论可利用基于采样的序列Monte Carlo算法解决移动节点的自主定位的算法,研究了序列Monte Carlo算法在无线传感器网络节点定位中的应用.利用该方法无需对传感器网络的先验知识和对节点移动的假设,利用低密度种子节点得到定位的精度较高.理论分析和仿真实验表明,利用序列Monte Carlo算法进行定位能够充分利用移动性来提高定位的精度,Monte Carlo定位算法很大程度上提高了定位效率,能够更有效地利用传感信息,降低不确定性因素的影响.
-
关键词:
- 传感器网络 /
- 节点定位 /
- Monte Carlo
Abstract: The accuracy and frequency of localization in wireless sensor networks play a crucial role in tracking and monitoring. Therefore, the study of high-efficient localization algorithm for accurate tracking is necessary. Through analyzing the traditional positioning based on Bayesian estimate process, the independent positioning of mobile node utilizing sampled sequential Monte Carlo algorithm was discussed. The application of Monte Carlo algorithm in positioning of wireless sensor networks was developed. This method has higher precision and does not need prior awareness of the wireless sensor networks and assumptions of node mobility. The algorithm maintains set of samples representing possible locations, achieves accurate localization cheaply with low seed density. Theoretical analysis and simulation experiments prove that Monte Carlo algorithm improves the positioning efficiency largely, utilizes sense information more effectively and decreases the impact of uncertainty. The properties of our technique were analyzed and experiment results from simulations were reported. The experiment results show that the sequential Monte Carlo localization technique can provide accurate localization.-
Key words:
- sensor networks /
- node localization /
- Monte Carlo
-
[1] Capkun S,Hamdi M, Hubaux J . GPS-free positioning in mobile ad-hoc networks[J]. Cluster Computing, 2002,5(2):157-167[2] Niculescu D, Nath B. Ad hoc positioning system(APS) using AOA Proceedings of IEEE INFOCOM. Piscataway,NJ:IEEE,2003:1734-1743[3] Niculescu D,Nath B. DV based positioning in ad-hoc networks[J]. Journal of Telecommunication System, 2003:123-128[4] Shang Yi, Shi Hongchi, Ahmed A. Performance study of localization methods for ad-hoc sensor networks, mobile ad-hoc and sensor system Proceedings of 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems. Piscataway,NJ:IEEE,2004:184-193[5] Tilak S,Kolar V,Nael B,et al. Dynamic localization protocols for mobile sensor networks . Binghamton,NY:Binghamton University,2004 .[6] Doherty L,Pister K S J,EI Ghaoui L. Convex position estimation in wireless sensor networks Proceedings-IEEE INFOCOM. Piscataway,NJ:IEEE,2001,3:1655-1663[7] Savvides A,Han C C,Strivastava M B. Dynamic fine-grained localization in ad-hoc networks of sensors Proc Annu Int Conf Mobile Comput Networking. New York:ACM Press,2001:166-179[8] Hu Lingxuan, Evans David. Localization for mobile sensor networks Proc Annu Int Conf Mobile Comput Networking. New York:ACM Press,2004:45-47[9] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proc Part F Radar Signal Process, 1993,140( 2):107-113[10] Liu J S,Chen Rong. Sequential Monte Carlo methods for dynamic systems[J]. Journal of the American Statistical Association,1998,93(443):1032-1044 期刊类型引用(8)
1. 刘钊瑄,王海星. 航空安全学科知识图谱构建与教学应用. 中国民航飞行学院学报. 2025(02): 10-14+19 . 百度学术
2. 张兆宁,杨雯. 基于任务优先权的军民航飞行活动协同排序模型. 中国民航大学学报. 2024(02): 23-29 . 百度学术
3. 莫德俊. 公路工程中的交通流量管理与优化研究. 运输经理世界. 2024(20): 37-39 . 百度学术
4. 申晨,赵世乐,沐瑶,许学吉. 机场密集区域空域容量评估方法研究. 哈尔滨商业大学学报(自然科学版). 2023(02): 234-241 . 百度学术
5. 陈万通,刁天茹,贾吉庆,秦仕伟. 基于扇形领域扩展的同步双向A~*算法. 计算机应用研究. 2022(01): 118-122+127 . 百度学术
6. 程晓航,关礼安,朱立彬,张海. 基于默克尔树的飞行计划校验算法. 指挥信息系统与技术. 2022(05): 41-44 . 百度学术
7. 王瑛,周楚涵. 改航路径规划问题研究综述. 空军工程大学学报(自然科学版). 2021(01): 1-8+84 . 百度学术
8. 王兴隆,刘洋,潘维煌. 空中交通系统自组织临界特性辨识及应用. 交通信息与安全. 2020(02): 96-101 . 百度学术
其他类型引用(0)
-

计量
- 文章访问数: 2704
- HTML全文浏览量: 189
- PDF下载量: 938
- 被引次数: 8