Error analysis and integrated compensation of scale factor for MEMS gyroscope
-
摘要: 动态条件下,标度因数引起的误差是MEMS(Micro Electromechanical System)陀螺主要误差源之一.为了提高陀螺精度,基于内框驱动式硅MEMS陀螺误差机理,分析了标度因数常值误差、非线性误差以及不对称误差的物理起因,构建了标度因数误差数学模型,提出了对陀螺标度因数按照角速度大小分段插值的补偿方法,消除了转速引起的陀螺标度因数误差.试验结果表明:MEMS陀螺标度因数误差高达4053.2(°)/h(1 σ ),采用分段插值法补偿后陀螺误差减小到79.0(°)/h(1 σ ),补偿精度比一次拟合及分段法分别提高了15.4倍和7.5倍,验证了MEMS陀螺标度因数误差模型的正确性,证明了标度因数实时分段插值补偿方法的准确性和适用性.Abstract: In dynamic condition, scale factor error is one of the main errors for MEMS(micro electromechanical system)gyroscopes. For the sake of improving performance of the MEMS gyroscope, the physical origin of bias, nonlinear and asymmetry error of scale factor were analyzed. Based on the operational principle of MEMS gyroscope driven by the inner frame, mathematical error model of scale factor for MEMS gyroscope was designed. According to the angular velocity of gyroscope, the method to compensate scale factor was proposed so as to eliminate scale factor error caused by angular rate. The experimental results show that the scale factor original error of gyroscope is 4053.2(°)/h(1 σ ) and error compensated by the integrated compensation method is improved to 79.0(°)/h(1 σ ).Compared with the methods of least square and segmented compensation, the precision of gyroscope compensated by the integrated method is improved 15.4 and 7.5 times respectively. The accuracy of the theories model is verified and a theoretical foundation for future practical application is provided.
-
[1] 高钟毓. 国外微机械惯性仪表的进展[J].中国惯性技术学报,1996,4(1):6-10 Gao Zhongyu. Advance of micromechanical inertial instruments abroad[J].Journal of Chinese Inertial Technology, 1996,4(1):6-10 (in Chinese) [2] Kourepenis A, Borenstein J, Connelly J, et al. Performance of MEMS inertial sensors . IEEE 0-7803-4330-1/98,1998 [3] 方玉明,茅盘松.内框驱动式硅微型角振动陀螺仪灵敏度研究[J].电子器件,2004, 27(1):189-191 Fang Yueming, Mao Pansong. The sensitivity study of an angular vibratory micromechanical gyroscope driven by the inner frame[J]. Chinese Journal of Electron Devices, 2004, 27(1):189-191(in Chinese) [4] Greiff P,Boxenhom B, King T, et al. Silicon monolithic micromechanical gyroscope[J].IEEE,1991:966-968 [5] 吴学忠,刘宗林,李圣怡.微硅陀螺性能影响因素及其对策研究[J]. 微纳电子技术,2003,7(8):274-280 Wu Xuezhong,Liu Zonglin,Li Shengyi. Influence factors and enhancement on property of micro silicon gyroscopes[J]. Micron Electronic Technology,2003,7(8):274-280(in Chinese) [6] Liu Qin,Liu Li,Qi Zaikang. Error analysis and compensation of strapdown inertial navigation system[J].Journal of Beijing Institute of Technology,2002,11(2):117-120 [7] Yang Jing, Chang Wook, Bang Won-chul,et al. Analysis and compensation of error in the input device based on inertial sensors The International Conference on Information Technology:Coding and Computing.Michigan:IEEE,2004 [8] 谷宏强,马立元,郭利.速率捷联惯性测量系统的数学模型及误差标定[J]. 军械工程学院学报,1997,9(4):28-32 Gu Hongqiang,Ma Liyuan,Guo Li. Mathematical model and error demarcation of the rate strap-down inertial measuring system[J].Journal of Ordnance Engineering College, 1997,9(4):28-32(in Chinese) [9] 刘波,李学锋.速率捷联惯导系统陀螺仪误差分段补偿技术研究[J].航天控制,2005,23(1):72-75 Liu Bo, Li Xuefeng.The research of real time and segmented error compensation of gyroscope in SIMU[J].Aerospace Control, 2005,23(1):72-75(in Chinese) [10] 高新闻,陈孝威.捷联惯性测量系统的误差补偿研究[J].贵州大学学报,2003,20(2):173-179 Gao Xinwen,Chen Xiaowei. The error compensation investigation of inertial measurement system[J]. Journal of Guizhou University, 2003,20(2):173-179(in Chinese) [11] Don G Kim,Sung K Hong. The compensation of nonlinear thermal bias drift of resonant rate sensor(RRS) using fuzzy logic[J].IEEE,1998:38-42 [12] Harish K Joglekar,Venka A. Gyro scale-factor error and misalignment estimation for a spacecraft AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Providence:AIAA,2004:1-8
点击查看大图
计量
- 文章访问数: 3552
- HTML全文浏览量: 106
- PDF下载量: 1641
- 被引次数: 0