Method for simulating mechanical behavior of syntactic foam plastics by artificial neural networks
-
摘要: 对人工神经网络(ANN)方法在复合泡沫塑料力学行为模拟中的应用进行了研究.首先,选取影响材料力学行为的因素和所需模拟、预测的力学性能作为输入、输出量;然后,利用反向传播算法建立了四层神经网络模型,对复合泡沫塑料的力学性能和本构关系进行了模拟和预测.数值结果表明,训练后的神经网络模型能较好地模拟、预测材料的模量、屈服强度和不同应变率及不同温度下的压缩应力-应变曲线.此外,3种不同改进训练方法的比较说明,Bayesian规则化法的泛化能力最好,LM法收敛最快,而自适应梯度下降动量法则需要较长的迭代时间才能达到相同的精度.Abstract: Application of artificial neural networks (ANN) method on the mechanical behavior simulation of syntactic foam plastics was discussed. Firstly, factors influencing on the mechanical behavior and mechanical properties simulated and predicted were separately taken as input and output quantities. Secondly, Four-layer neural networks model was established to simulate and predict the mechanical properties and constitutive relationship of syntactic foam plastics by means of back-propagation algorithm. The numerical results show that the trained ANN model can preferably simulate and predict the mechanical behavior of material, such as Young′s modulus, yield strength and stress-strain curves under different strain rates or temperatures. Additionally, by comparison among three different modified training methods, it is found that Bayesian regularization back-propagation has the best capacity of improving network generalization, Levenberg-Marquardt(LM) back-propagation would converge fastest, and gradient descent momentum & adaptive learning rate back-propagation need long-end iterative process before the same precision in calculation is achieved.
-
[1] Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites:a review[J].Composites Science and Technology, 2003, 63(14):2029-2044 [2] 闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京,科学出版社,2003:258-281 Wen Xin, Zhou Lu, Li Xiang, et al. MATLAB NN simulation and application[M]. Beijing:Science Press, 2003:258-281 (in Chinese) [3] 阎平凡,张长水.人工神经网络与模拟进化计算[M]. 第2版.北京,清华大学出版社,2005:19-30,451-473 Yan Pingfan, Zhang Changshui. Artificial neural networks and evolutionary computing [M]. 2nd ed.Beijing:Tsinghua University Press, 2005:19-30, 451-473 (in Chinese) [4] 苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130-135 Su Gaoli, Deng Fangping. On the improving backpropagation algorithms of the neural networks based on MATLAB language:a review[J]. Bulletin of Science and Technology, 2003, 19(2):130-135(in Chinese) [5] 卢子兴,严寒冰,刘波,等.复合泡沫塑料力学性能的实验研究 白以龙,杨卫.力学2000学术大会论文集.北京:北京气象出版社,2000:584-586 Lu Zixing, Yan Hanbing, Liu Bo, et al. Experimental research on the mechanical properties of syntactic foams Bai Yilong, Yang Wei. Academic Proceeding of Mechanics 2000. Beijing:Beijing Meteorological Press, 2000:584-586 (in Chinese) [6] 卢子兴,袁应龙,芦艾,等.复合泡沫塑料准静态压缩的应变率效应和温度效应[J].含能材料,2004,12(增):584-587 Lu Zixing, Yuan Yinglong, Lu Ai, et al.Quasi-static compression of polyurethane syntactic foams considering their strain rate and temperature effects[J]. Energetic Materials, 2004, 12(supplement):584-587 (in Chinese) [7] 逯静洲,林皋.人工神经网络技术在混凝土本构模型中的应用[J].土木工程学报,2003,36(4):38-48 Lu Jingzhou, Lin Gao. Application of artificial neural networks to constitutive model of concrete[J]. China Civil Engineering Journal, 2003, 36(4):38-48(in Chinese)
点击查看大图
计量
- 文章访问数: 2833
- HTML全文浏览量: 19
- PDF下载量: 894
- 被引次数: 0