Point cloud multi-view registration and integration technology based on automobiles-bodies RE design
-
摘要: 针对整车车身点云空间尺寸较大,数据量庞大,还原精度要求高等特点,提出基于骨架点的点云拼合算法,算法的基本思想是构造整车模型的骨架点和分块点云的mark点,由全等三角形法则搜索骨架点与mark点的映射关系,应用加速迭代的改进ICP(Iterative Closest Point)算法拼合整车点云.某厂轻卡整车点云的拼合实例证明,该算法拼合精度高,运算速度快,是拼合整车点云行之有效的方法.Abstract: As the automobiles-bodies point cloud had the traits of large geometric dimension, huge data and rigor reverse precision, one registration and integration algorithm based on the framework points was put forward. The algorithm-s basic idea is to construct the framework points of vehicle model and the mark points of the separate point cloud, to search the mapped relationship between framework points and mark points using congruence triangle principle and to match the vehicle point cloud using the improved iterative closest point(ICP) algorithm which can accelerate iterative speed. A vehicle point cloud registration example of one light truck proves that this algorithm-s accuracy on registration is exigent, the calculation speed is very fast and the algorithm is one effective method of matching vehicle body point cloud.
-
[1] Williams J, Bennamoun M. Simultaneous registration of multiple corresponding point sets[J]. Computer Vision and Image Understanding, 2001, 87(1-3):90-103 [2] Chui Haili, Anand R. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2-3):114-141 [3] Timothee M. Fast geometric matching for shape registration . Switzerland:Department of Science, University of Nenohatel,2002 [4] 傅健,路宏年. 工业CT半扫描成像技术[J].北京航空航天大学学报. 2005,31(9):967-969 Fu Jian, Lu Hongnian. Half-scan mode for industrial CT [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005,31(9):967-969(in Chinese) [5] Lee S H, Kim H S, Hur S M, et al. STL file generation from measured point data by segmentation and Delaunay triangulation[J]. Computer-Aided Design, 2002, 34(10):691-704 [6] Specht A R, Sappa A D, Devy M. Edge registration versus triangular mesh registration, a comparative study[J]. Signal Processing:Image Communication, 2005, 20(9/10):853-868 [7] Giri D, Jouaneh M, Stucker B. Error sources in a 3-D reverse engineering process[J]. Precision Engineering, 2004, 28(3):242-251 期刊类型引用(9)
1. 袁伟康,解志斌,陈磊,杨紫薇. 基于岭回归正则极限学习机的OFDM系统信道估计. 无线电通信技术. 2023(01): 163-168 . 百度学术
2. 丁杰,丁丹,景梦娇,胡博仁. 基于MA的自适应多载波并行组合扩频通信技术. 火力与指挥控制. 2023(01): 50-56+64 . 百度学术
3. 丁杰,丁丹. 一种改进的多载波并行组合扩频通信系统. 自动化技术与应用. 2023(04): 74-78+129 . 百度学术
4. 郭腾. 基于改进LSTM的认知无线电频谱感知模型及仿真. 微型电脑应用. 2023(05): 159-162 . 百度学术
5. 丁杰,丁丹,王志强,胡博仁. 复杂信道中的多载波并行组合扩频通信技术研究. 火力与指挥控制. 2023(04): 108-116 . 百度学术
6. 刘步花,丁丹,杨柳,薛乃阳,刘仲谦. 基于DNN的无人机数据OFDM传输技术. 系统工程与电子技术. 2022(02): 696-702 . 百度学术
7. 刘春辉,王美琳,董赞亮,王沛. 基于调制卷积神经网络的空地数据链信道估计. 北京航空航天大学学报. 2022(03): 533-543 . 本站查看
8. LIU Chunhui,WANG Meilin,DONG Zanliang,WANG Pei. Time-Varying Channel Estimation Based on Air-Ground Channel Modelling and Modulated Learning Networks. Chinese Journal of Electronics. 2022(03): 430-441 . 必应学术
9. 吴蕾,张晓慧. Lagrange插值的继电保护设备信号同步采样. 西安邮电大学学报. 2022(05): 35-42 . 百度学术
其他类型引用(7)
-

计量
- 文章访问数: 3496
- HTML全文浏览量: 183
- PDF下载量: 933
- 被引次数: 16