Method based on μ-analysis techniques for the clearance of flight control laws
-
摘要: 针对目前应用的网格法在实际使用中的不足,将μ分析方法应用到飞行控制律 的评估与确认中.以某型战斗机及为其设计的鲁棒飞行控制律为研究对象,采用相应的稳定 性准则,利用线性分式变换形式,考虑各种已知的不确定参数摄动,用μ分析方法实现了对 该准则的评估与确认.与传统网格法相比,基于μ分析的方法具有两个明显的优点,一是网 格间的点可以得到评估,二是不存在网格法的"维数灾"问题,从而提高了评估的可靠性和 效率.Abstract: The clearance of modern flight control laws to take into account the m any uncertainties has become a great challenge to engineers and researchers, and traditional grid-based methods have gradually been incompetent for this task. A method based on μ-analysis techniques was used to solve this very difficult problem. The aircraft model and flight control law used in the prese nt study is a twin-engine fighter with a robust inverse dynamics estimatio n(RIDE) controller. Our approach was applied to evaluate a linear stability margi n criterion currently widely used by the aerospace industry. Using the linear fr actio nal transformation based uncertainty model developed from the nonlinear aircraft model, and a fictitious multiplicative input uncertainty representation of the criterion, stability robustness analysis results were presented for the flight co ntrol law. Compared with traditional grid-based ones, the μ-analysis based met ho d has two obvious advantages which provide more rigorous and efficient in the pr esence of multiple sources of parametric uncertainty. One is the points between grids can be cleared, the other is there exists no "disaster of dimension" pro blems.
-
Key words:
- clearance /
- flight control law /
- uncertainty /
- μ-analysis /
- linear fractional tran sformation
-
[1] Fielding C, Varga A, Bennani S, et al. Advanced techniq ues for clearance of flight control laws[M]. Berlin:Springer-Verlag, 2002 [2] Magni J F, Bennani S, Terlouw J. Robust flight control:a design challeng e[M]. London:Springer-Verlag, 1997 [3] Bates D G, Kureemun R, Mannchen T. Improved clearance of a flight contro l law using μ-analysis techniques[J]. Journal of Guidance, Control, and Dyna mics, 2003, 26(6):869-884 [4] Deodhare G, Patel V V. A "modern" look at gain and phase margins:an H ∞/μ approach AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 1998:325-335 [5] Balas G J, Doyle J C. μ-analysis and synthesis toolbox user′s guide (v ersion 3.06)[M]. Natick, MA:MUSYN Inc and the MathWorks Inc, 2001 期刊类型引用(11)
1. 闫富乾,石致远,王立闻. 基于改进灰狼算法的柔性作业车间动态节能分批调度问题. 现代制造工程. 2024(01): 24-32+161 . 百度学术
2. 闫富乾,陈浩杰,丁国富,孟祥印,张剑. 求解柔性分批调度问题的双层搜索框架入侵杂草算法. 计算机集成制造系统. 2023(02): 556-567 . 百度学术
3. 张森悦,隋学梅,李一波. 基于自适应樽海鞘算法的多无人机任务分配. 吉林大学学报(理学版). 2022(05): 1123-1132 . 百度学术
4. 黄刚,李军华. 基于AC-DSDE进化算法多UAVs协同目标分配. 自动化学报. 2021(01): 173-184 . 百度学术
5. 刘森琪,王鸿,于宁宇,郝礼楷. 基于信息素启发狼群算法的UAV集群火力分配. 北京航空航天大学学报. 2021(02): 297-305 . 本站查看
6. 王昭,华翔. 一种改进多目标灰狼优化算法的多无人机任务分配. 西安工业大学学报. 2021(01): 94-102 . 百度学术
7. 郑书坚,赵文杰,钟永建,贺敏,赵文龙. 面向多目标拦截问题的协同任务分配方法研究. 空天防御. 2021(03): 55-64 . 百度学术
8. 韩统,崔明朗,张伟,陈国明,王骁飞. 多无人机协同空战机动决策. 兵器装备工程学报. 2020(04): 117-123 . 百度学术
9. 游航航,韩其松,余敏建,龙宏志,杨海燕,李朋永. 基于AIGWO-IMMUKF的目标跟踪算法. 北京航空航天大学学报. 2020(10): 1826-1833 . 本站查看
10. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
11. 王荣巍,何锋,周璇,鲁俊,李二帅. 面向无人机蜂群的航电云多层任务调度模型. 航空学报. 2019(11): 221-232 . 百度学术
其他类型引用(9)
-

计量
- 文章访问数: 3253
- HTML全文浏览量: 205
- PDF下载量: 448
- 被引次数: 20