Improve electricity generation of microbial fuel cells by low intensity ultrasound
-
摘要: 微生物燃料电池(MFCs,Microbial Fuel Cells)可在处理有机废水的同时获得电能,但生物体系缓慢的电子传递速率是其发展的瓶颈.为了寻求提高MFCs工作效率的途径,建立了2个有效容积为1.5L,电极面积160cm2的单室MFCs,设置为超声波强化反应器和对照反应器,进行对比试验.结果表明,采用强度为0.2W/cm2、频率33kHz、超声间隔为83h的超声波对反应器辐照10min,在反应后期(运行2880h后)MFCs与对照反应器相比最大功率密度提高了6%,一个运行周期产生的总电量增加了46.5%;设置超声的反应器库仑效率(CE,Coulombic Efficiency)比对照反应器提高了25.7%.超声波强化反应器中水的pH值最小值比对照pH值最小值低0.2,超声波辐照的反应器氧化还原电位(ORP,Oxidation Reduction Potential) 最小值低于对照反应器ORP最小值34.8mV. 2个反应器3000min对化学需氧量(COD,Chemical Oxygen Demand)的净化效率都达到72.9%,超声波对COD去除贡献不明显,并从低强度超声波对微生物作用的过程方面分析了上述现象.Abstract: It is possible to produce electricity in microbial fuel cells(MFCs) while accomplishing biological wastewater treatment, but slow electron transference limits the development of MFCs. To improve the electricity generation, two similar single chambered MFCs were built, which had the available volume 1.5L, and each electrode area was 160cm2. One was irradiated by ultrasound, the other used as control. The MFCs was induced by ultrasound at 33kHz in 10min with the ultrasound intensities of 0.2W/cm2 every 83 hours. The result shows that in the end of the reaction(about 2880h), the maximum power density of the ultrasound treatment reactor increases by 6% comparing with that of the control, and the total coulomb increases by 46.5% in one reaction cycle. The ultrasound treatment reactor′s Coulombic efficiency(CE) is 25.7% higher than that of the control. Moreover, in the MFCs with ultrasound, the lowest pH of wastewater is lower than that in the control, and the lowest oxidation reduction potential(ORP) of reactor is lower by 34.8mV. In 3000min the two reactors′ removal rate of chemical oxygen demand(COD) all reaches to 72.9%. The ultrasound irradiation doesn′t increase the removal rate of COD obviously. The explanation of these differences was given according to the influence of low intensity ultrasound to the microorganisms.
-
Key words:
- microbial fuel cells(MFCs) /
- ultrasonic /
- glucose /
- power generation
-
[1] 成都市科学技术学会科普知识大全.微生物燃料电池. http://www.cdkjx.com/web4/extensive/shownews.asp?newsid=730 [2] Liu Hong,Ramnarayanan R,Logan B. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol,2004,38:2281-2285 [3] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew Chem Int Ed,2000,39:1180-1184 [4] Wood B E, Aldrich H C, Ingram L O. Ultrasound stimulates ethanol production during the simultaneous scarification and fermentation of mixed waste office paper[J]. Biotechnol Prog,1997,13:232-237 [5] Schlafer O,Onyeche T,Bormann H,et al. Ultrasound stimulation of micro-organisms for enhanced biodegradation[J].Ultrasonics,2002, 40(1-8):25-29 [6] 刘红,何韵华,张山立,等. 微污染水源水处理中超声波强化生物降解有机污染物研究[J]. 环境科学,2004,25(3):57-60 Liu Hong,He Yunhua,Zhang Shanli,et al. Organic pollutants biodegradation in micro-polluted water enhanced by ultrasonic[J]. Environmental Science, 2004,25(3):57-60(in Chinese) [7] 刘红,闫怡新,王文燕,等. 低强度超声波改善污泥活性[J]. 环境科学,2005,26(4):124-128 Liu Hong, Yan Yixin, Wang Wenyan, et al. Improvement of the activity of activated sludge by low intensity ultrasound[J]. Environmental Science, 2005,26(4):124-128(in Chinese) [8] Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology,2004,38:4040-4046 [9] 高廷耀,顾国维. 水污染控制工程(下册)[M]. 北京:高等教育出版社,1999:177-187 Gao Tingyao, Gu Guowei. Water pollution control engineering(second volume) [M]. Beijing:Higher Education Press,1999:177-187(in Chinese) [10] Min B, Kim J R, Logan B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39:4961-4968 [11] Ieropoulos I A, Greenmana J, Melhuish C,et al. Comparative study of three types of microbial fuel cell[J]. Enzyme and Microbial Technology, 2005, 37:238-245 [12] Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol,2004,38:4900-4904 [13] Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol,2005,39(14):5488-5493 [14] Marcus R A, Sutin N. Electron transfers in chemistry and biology[J]. Biochim Biophys Acta, 1985, 811(3):265-322 [15] Pitt W G, Ross S A. Ultrasound increases the rate of bacterial cell growth[J]. Biotechnol Prog, 2003,19(3):1038-1044 [16] 时兰春,王伯初,杨艳红,等. 低强度超声波在生物技术中应用的研究进展[J]. 重庆大学学报,2005,25(10):139-142 Shi Lanchun, Wang Bochu, Yang Yanhong, et al. Application of low intensity ultrasound to biotechnology[J]. Journal of Chongqing University, 2005, 25(10):139-142(in Chinese) [17] 戴传云,王伯初. 低功率超声波对微生物发酵的影响[J]. 重庆大学学报,2003,26(2):15-17 Dai Chuanyun, Wang Bochu. Effect of low energy ultrasonic on the microorganism fermentation[J]. Journal of Chongqing University,2003,26(2):15-17(in Chinese) [18] 李刚,杨立中,欧阳峰. 厌氧消化过程控制因素及pH和Eh的影响分析[J]. 西南交通大学学报,2001,10(5):2258-2272 Li Gang,Yang Lizhong,Ouyang Feng. Control factors of anaerobic digestion and effect of pH and Eh[J]. Journal of Southwest Jiaotong University, 2001,10(5):2258-2272(in Chinese) [19] 周洪波,Cord-Ruwisch R,陈坚. 产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J]. 中国沼气,2000,18(4):20-23 Zhou Hongbo,Cord-Ruwisch R,Chen Jian. The strategy of redox potential control and its influence on anaerobic fermentation of glucose in acidogenic reactor[J].China Biogas, 2000,18(4):20-23(in Chinese)
点击查看大图
计量
- 文章访问数: 3193
- HTML全文浏览量: 124
- PDF下载量: 1082
- 被引次数: 0