留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低强度超声波改善微生物燃料电池产电效能

姚璐 李正龙 刘红

马永光, 陈海波, 何国瑜等 . 射频仿真暗室的静区分析[J]. 北京航空航天大学学报, 2006, 32(12): 1431-1434.
引用本文: 姚璐, 李正龙, 刘红等 . 低强度超声波改善微生物燃料电池产电效能[J]. 北京航空航天大学学报, 2006, 32(12): 1472-1476.
Ma Yongguang, Chen Haibo, He Guoyuet al. Quiet zone analysis of a RF simulation anechoic chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1431-1434. (in Chinese)
Citation: Yao Lu, Li Zhenglong, Liu Honget al. Improve electricity generation of microbial fuel cells by low intensity ultrasound[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1472-1476. (in Chinese)

低强度超声波改善微生物燃料电池产电效能

基金项目: 国家科技攻关计划资助项目(2005DFBA0005)
详细信息
  • 中图分类号: X 703.1

Improve electricity generation of microbial fuel cells by low intensity ultrasound

  • 摘要: 微生物燃料电池(MFCs,Microbial Fuel Cells)可在处理有机废水的同时获得电能,但生物体系缓慢的电子传递速率是其发展的瓶颈.为了寻求提高MFCs工作效率的途径,建立了2个有效容积为1.5L,电极面积160cm2的单室MFCs,设置为超声波强化反应器和对照反应器,进行对比试验.结果表明,采用强度为0.2W/cm2、频率33kHz、超声间隔为83h的超声波对反应器辐照10min,在反应后期(运行2880h后)MFCs与对照反应器相比最大功率密度提高了6%,一个运行周期产生的总电量增加了46.5%;设置超声的反应器库仑效率(CE,Coulombic Efficiency)比对照反应器提高了25.7%.超声波强化反应器中水的pH值最小值比对照pH值最小值低0.2,超声波辐照的反应器氧化还原电位(ORP,Oxidation Reduction Potential) 最小值低于对照反应器ORP最小值34.8mV. 2个反应器3000min对化学需氧量(COD,Chemical Oxygen Demand)的净化效率都达到72.9%,超声波对COD去除贡献不明显,并从低强度超声波对微生物作用的过程方面分析了上述现象.

     

  • [1] 成都市科学技术学会科普知识大全.微生物燃料电池. [2] Liu Hong,Ramnarayanan R,Logan B. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol,2004,38:2281-2285[3] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew Chem Int Ed,2000,39:1180-1184[4] Wood B E, Aldrich H C, Ingram L O. Ultrasound stimulates ethanol production during the simultaneous scarification and fermentation of mixed waste office paper[J]. Biotechnol Prog,1997,13:232-237[5] Schlafer O,Onyeche T,Bormann H,et al. Ultrasound stimulation of micro-organisms for enhanced biodegradation[J].Ultrasonics,2002, 40(1-8):25-29[6] 刘红,何韵华,张山立,等. 微污染水源水处理中超声波强化生物降解有机污染物研究[J]. 环境科学,2004,25(3):57-60 Liu Hong,He Yunhua,Zhang Shanli,et al. Organic pollutants biodegradation in micro-polluted water enhanced by ultrasonic[J]. Environmental Science, 2004,25(3):57-60(in Chinese)[7] 刘红,闫怡新,王文燕,等. 低强度超声波改善污泥活性[J]. 环境科学,2005,26(4):124-128 Liu Hong, Yan Yixin, Wang Wenyan, et al. Improvement of the activity of activated sludge by low intensity ultrasound[J]. Environmental Science, 2005,26(4):124-128(in Chinese)[8] Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology,2004,38:4040-4046[9] 高廷耀,顾国维. 水污染控制工程(下册)[M]. 北京:高等教育出版社,1999:177-187 Gao Tingyao, Gu Guowei. Water pollution control engineering(second volume) [M]. Beijing:Higher Education Press,1999:177-187(in Chinese)[10] Min B, Kim J R, Logan B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39:4961-4968[11] Ieropoulos I A, Greenmana J, Melhuish C,et al. Comparative study of three types of microbial fuel cell[J]. Enzyme and Microbial Technology, 2005, 37:238-245[12] Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol,2004,38:4900-4904[13] Liu H, Cheng S, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol,2005,39(14):5488-5493[14] Marcus R A, Sutin N. Electron transfers in chemistry and biology[J]. Biochim Biophys Acta, 1985, 811(3):265-322[15] Pitt W G, Ross S A. Ultrasound increases the rate of bacterial cell growth[J]. Biotechnol Prog, 2003,19(3):1038-1044[16] 时兰春,王伯初,杨艳红,等. 低强度超声波在生物技术中应用的研究进展[J]. 重庆大学学报,2005,25(10):139-142 Shi Lanchun, Wang Bochu, Yang Yanhong, et al. Application of low intensity ultrasound to biotechnology[J]. Journal of Chongqing University, 2005, 25(10):139-142(in Chinese)[17] 戴传云,王伯初. 低功率超声波对微生物发酵的影响[J]. 重庆大学学报,2003,26(2):15-17 Dai Chuanyun, Wang Bochu. Effect of low energy ultrasonic on the microorganism fermentation[J]. Journal of Chongqing University,2003,26(2):15-17(in Chinese)[18] 李刚,杨立中,欧阳峰. 厌氧消化过程控制因素及pH和Eh的影响分析[J]. 西南交通大学学报,2001,10(5):2258-2272 Li Gang,Yang Lizhong,Ouyang Feng. Control factors of anaerobic digestion and effect of pH and Eh[J]. Journal of Southwest Jiaotong University, 2001,10(5):2258-2272(in Chinese)[19] 周洪波,Cord-Ruwisch R,陈坚. 产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J]. 中国沼气,2000,18(4):20-23 Zhou Hongbo,Cord-Ruwisch R,Chen Jian. The strategy of redox potential control and its influence on anaerobic fermentation of glucose in acidogenic reactor[J].China Biogas, 2000,18(4):20-23(in Chinese)
  • 期刊类型引用(5)

    1. 张晶,王博. 频控阵对施放随队支援电子干扰的影响研究. 空天预警研究学报. 2024(01): 31-37 . 百度学术
    2. 陈阳,田波,王春阳,宫健,谭铭,赵英健. 基于MVDR波束形成的FDA平台外干扰抑制. 系统工程与电子技术. 2023(01): 32-40 . 百度学术
    3. 董欣心,岳振江,王志,刘莉. 火箭整流罩锥壳夹层结构不确定性轻量化设计. 北京航空航天大学学报. 2023(03): 625-635 . 本站查看
    4. 吕岩,曹菲. 基于线性约束最小方差的稳健波束形成算法. 北京航空航天大学学报. 2023(03): 617-624 . 本站查看
    5. 王博,陈楚舒,马学亮,朱鹏羽. 基于对数稀布阵的FDA-MIMO干扰抑制. 空军工程大学学报(自然科学版). 2021(05): 37-42 . 百度学术

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  3230
  • HTML全文浏览量:  133
  • PDF下载量:  1082
  • 被引次数: 6
出版历程
  • 收稿日期:  2006-05-15
  • 网络出版日期:  2006-12-31

目录

    /

    返回文章
    返回
    常见问答