Three dimensional turbulence numerical simulation of rotor in forward flight
-
摘要: 采用计算流体力学CFD(Computational Fluid Dynamics)方法,分析正常前飞和近地前飞时直升机的流场与性能.在直角坐标系中,采用有限体积法和压力耦合方程的半隐式法SIMPLER(Semi-Implicit Method for Pressure-Linked Equations Revised)算法求解三维定常不可压的湍流N-S(Navier-Stokes)方程.在分析中,旋转的螺桨被描绘成沿螺桨桨叶展向分布、与本地流动参数相关以及时间平均的动量源项.计算方法还包括K-ε湍流模型和壁面函数法等措施.流场分析和性能预测同实验测量数据的良好的一致性表明,这种CFD方法可以有效的分析直升机的具体设计问题.Abstract: The flow field and performance of a helicopter in common forward flight and forward flight near the ground were analyzed using CFD (computational fluid dynamics) technique. The general governing equations of turbulent flow were set up, and were directly solved by finite volume method and SIMPLER (semi-implicit method for pressure-linked equations revised) approach in Cartesian coordinates. The spinning rotor was represented as time-averaged momentum source terms distributed along the span of the rotor with functional relationship to the local flow conditions in N-S(Navier-Stokes) equations. K-ε turbulence model and wall function method were included in the calculation method. The calculated results for flow field and performance correlation show good agreement with the measured data. Therefore, the numerical simulation technique is proved to be feasible for analyzing design issues of a helicopter.
-
Key words:
- turbulent flow /
- numerical analysis /
- momentum source term /
- wall function
-
[1] 王适存. 直升机空气动力学[M]. 北京:航空工业出版社, 1985 Wang Shicun. Aerodynamics of helicopter[M]. Beijing:The Aviation Industry Press, 1985(in Chinese) [2] Conlisk A T. Modern helicopter rotor aerodynamics[J]. Progress in Aerospace Sciences, 2001(37):419-476 [3] Chuiton F Le. Actuator disc modeling for helicopter rotors[J]. Aerospace Science and Technology,2004,8(4):285-297 [4] Cao Yihua,Yu Ziwen. Numerical simulation of turbulent flow around helicopter ducted tail rotor[J]. Aerospace Science and Technology,2005,9(4):300-306 [5] Rajagopalan R G,Mathur S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society,1993,38(3):14-25 [6] Kang N, Sun M. Prediction of the flow field of a rotor in ground effect . Journal of the American Helicopter Society, 1997, 42(2):195-198 [7] Patankar S V. Numerical heat transfer and fluid flow[M]. New York:Mc Graw-Hill, 1980 [8] 陶文铨. 数值传热学 . 西安:西安交通大学出版社,2001 Tao Wenquan. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001(in Chinese) [9] Curtiss H C,Sun M,Putman W F,et al. Rotor aerodynamics in ground effect at low advance ratios[J]. Journal of the American Helicopter Society,1984, 29(1):48-55 期刊类型引用(12)
1. 李文锋,周敬龙,王其,蒋绍勇,贺利军. 超宽带信号的非视距识别与测距误差抑制. 控制与决策. 2024(08): 2605-2612 . 百度学术
2. 谢飞,周敬龙,李文锋,张强. 动态环境下UWB测距的NLOS影响分析与优化. 武汉理工大学学报. 2022(01): 80-87 . 百度学术
3. 江渝川,何国斌. 基于红外视觉技术的机器人移动轨迹智能检测研究. 激光杂志. 2022(10): 184-187 . 百度学术
4. 刘芬. 基于PLC的工业机器人轨迹跟踪自动化控制系统设计. 自动化与仪器仪表. 2021(07): 84-88 . 百度学术
5. 朱天元,林艺旻. 虚拟现实和激光传感技术的机器人轨迹跟踪. 激光杂志. 2021(10): 157-161 . 百度学术
6. 郭家伟,谈波,陈华,吴昊. 爬壁机器人底盘结构全向移动自主控制设计. 机械设计与制造. 2021(11): 158-161 . 百度学术
7. 纪海宾,师彩云. 基于Origin的移动机器人测距传感器参数标定. 现代信息科技. 2020(09): 40-42+45 . 百度学术
8. 谌稳帅,汪地,徐佳丽. 基于UWB的水果采摘跟随收集系统的设计. 工业控制计算机. 2020(11): 13-15+18 . 百度学术
9. 代伟业,姜启龙,刘栋. 船舶导航机器移动轨迹的实时检测和跟踪研究. 舰船科学技术. 2020(22): 130-132 . 百度学术
10. 卫恒,吕强,刘扬,林辉灿,梁冰. 基于状态切换的分布式多机器人编队控制. 兵工学报. 2019(05): 1103-1112 . 百度学术
11. 徐庆坤,宋中越. 基于UWB的自主跟随机器人定位系统的设计. 计算机工程与设计. 2019(11): 3337-3341 . 百度学术
12. 郑亚君,薛磊,董璐,王庆领. 基于UWB定位技术的多移动机器人编队控制. 智能科学与技术学报. 2019(01): 83-87 . 百度学术
其他类型引用(11)
-

计量
- 文章访问数: 2565
- HTML全文浏览量: 57
- PDF下载量: 725
- 被引次数: 23