Volterra series based transonic unsteady aerodynamics modeling
-
摘要: 为了有效实现跨音速气动伺服弹性的分析与综合,应用Volterra级数理论建立了一种跨音速非定常气动力状态空间建模方法.小扰动假设下的跨音速非定常气动力可以近似地表示为一阶Volterra级数的形式.通过CFD(Computation Fluid Dynamics)技术计算得到由结构变形产生的非定常气动力阶跃响应可辨识出Volterra核,由此得到频域的广义非定常气动力影响系数.利用气动力有理函数拟合,得到气动弹性状态空间模型.为验证气动力建模的有效性,以后掠机翼为例进行颤振计算.结果表明,Volterra级数方法得到的非定常气动力模型能够反映一定的跨音速气动特性,颤振计算与CFD-CSD(CFD-Computation Structure Dynamics)的计算结果吻合很好.
-
关键词:
- 气动弹性 /
- 非定常气动力 /
- 跨音速 /
- 颤振 /
- Volterra级数
Abstract: To implement aeroservoelastic analysis and synthesis in transonic flow, an approach for transonic unsteady aerodynamics modeling by applying Volterra series theory is presented. Based on the assumption of small perturbation, transonic unsteady aerodynamics can be expressed approximately as one-order Volterra series. Using the unsteady aerodynamics step responses due to the structural deformation calculated by CFD(computation fluid dynamics) technique, the Volterra kernels are determined, and the generalized unsteady AIC(aerodynamics influence coefficients) in frequency-domain are obtained. Then the aeroelastic state-space model is built by rational function approximation. To validate the transonic aerodynamics modeling, flutter analysis of a swept wing is executed by the Volterra series approach and is compared with other methods. The results show the aerodynamics model educed by the Volterra series approach can reflect the features of transonic aerodynamics. The Volterra series approach coincides with the CFD-CSD(computation fluid dynamics-computation structure dynamics) method in flutter analysis.-
Key words:
- aeroelasticity /
- unsteady aerodynamics /
- transonic /
- flutter /
- Volterra series
-
[1] 管 德. 飞机气动弹性力学手册[M]. 北京:航空工业出版社,1994 Guan De. Aircraft aeroelasticity handbook[M]. Beijing:Aeronautical Industry Press, 1994 (in Chinese) [2] Rodden W P, John E H. MSC/NASTRAN aeroelastic analysis user’s guide[M]. The MacNeal-Schwendler Corporation, 1994 [3] Batina J T. Efficient algorithm for solution of the unsteady transonic small-disturbance equation[J]. Journal of Aircraft, 1988, 25(7):598~605 [4] Stephens C H, Arena A S, Gupta K K. CFD-Based aeroservoelastic predictions with comparisons to benchmark experimental data . AIAA paper-99-0766, 1999 [5] Kreiselmaier E, Laschka B. Small disturbance euler equations:efficient and accurate tool for unsteady load prediction[J]. Journal of Aircraft, 2000, 37(5):770~778 [6] Silva W A. A methodology for using nonlinear aerodynamics in aeroservoelastic analysis and design . AIAA paper-91-1110, 1991 [7] Raveh D E. Reduced-Order models for nonliear unsteady aaerodynamics[J]. AIAA Journal, 2001, 39(8):1417~1429 [8] Rugh W J. Nonliear system theory:The Volterra-Wiener approach[M]. The Johns Hopkins University Press, 1981 [9] Tiffang S H, Karpel M. Aeroservoelastic modeling and applications using minimum-state approximations of the unsteady aerodynamics . AIAA paper-89-1188, 1989 [10] 陆志良, 郭同庆, 管 德. 跨音速颤振计算方法研究 [J]. 航空学报, 2004, 25(4):214~217 Lu Zhiliang, Guo Tongqing, Guan De. A study of calculation method for transonic flutter[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(4):214~217(in Chinese)
点击查看大图
计量
- 文章访问数: 2921
- HTML全文浏览量: 198
- PDF下载量: 720
- 被引次数: 0