One method solving parameter estimation of varying stress accelerated life test
-
摘要: 变应力加速寿命试验的极大似然函数是高维非线性复杂目标函数,其待估参数多,采用梯度下降优化方法进行参数估计容易陷入局部极值,而采用全局优化方法又存在寻优效率低的问题.为了解决复杂多维目标函数优化的瓶颈问题,设计了一种基于实数编码遗传算法和Powell法的遗传加速方法.利用适应度函数获得两种优化方法的最佳切换点,最大程度发挥遗传算法和Powell算法的优点,既提高了多维非线性目标函数寻优效率又保证了参数估计的全局最优.液压泵加速寿命试验实例分析结果表明,遗传加速方法可以在寻优前期利用遗传算法保证待估参数的全局最优估计,在寻优后期快速逼近最优值,使寻优成功率达到85%.Abstract: The maximum likelihood function of varying stress accelerated life is a nonlinear multi-dimension complex object function with five evaluated parameters, whose parameter estimation is easy to get into local optimization with grads descending algorithm while has low searching efficiency with global optimal algorithm. To solve the bottleneck between direct and intellective optimization of multi-dimension complex object function, the genetic accelerated algorithm was presented based on real code genetic algorithm and Powell method. Through designing perfect switch with adaptive function, the genetic accelerated algorithm takes the advantages both genetic algorithm and Powell method at furthest that ensure global optimization and keep rapid searching velocity to multi-dimension complex object function. Application of hydraulic pump on accelerated life test shows that the genetic accelerated algorithm was able to fulfill global optimization at the beginning of parameter evaluation process and approach optimal values rapidly at the end of the process, its success rate of optimization can reach 85%.
-
[1] 王少萍.工程可靠性[M]. 北京:北京航空航天大学出版社,2000.237 Wang Shaoping. Engineering reliability [M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2000.237(in Chinese) [2] 王少萍. 液压泵计算机辅助测试及故障诊断研究. 北京:北京航空航天大学自动化及电气工程学院, 1994 Wang Shaoping. Computer aided test and fault diagnosis to hydraulic pump. Beijing:School of Automatic Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, 1994(in Chinese) [3] 周 明,孙树栋. 遗传算法原理及应用[M]. 北京:国防工业出版社,1999.13 Zhou Ming, Sun Shudong, Genetic algorithms:theory and applications [M]. Beijing:National Defense Industry Press, 1999.13(in Chinese) [4] 康立山,谢 云.非数值并行算法——模拟退火算法[M].北京:科学出版社,1994.29 Kang Lishan, Xie Yun. Nonnumeric parallel algorithm—simulated annealing[M]. Beijing:Science Press, 1994.29(in Chinese) [5] 潘凤萍,巩敦卫,孙晓燕,等.一种自适应遗传算法研究[J]. 中国矿业大学学报,2003,32(1):68~70 Pan Fengping, Gong Dunwei, Sun Xiaoyan, et al. Research on novel adaptive genetic algorithm [J]. Journal of China University of Mining & Technology, 2003,32(1):68~70(in Chinese) [6] Xu Dianguo, Li Yunfeng, Shi Jingzhuo, et al. Genetic algorithm for parameter identification of SACS motor testing. In:4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003.99~102 [7] Gregory Seront, Hugues Bersini. Simplex GA and Hybrid Methods. In:Proceedings of IEEE International Conference on Evolutionary Computation, 1996.845~848 [8] 张 晖,吴 斌,余张国. 引入模拟退火机制的新型遗传算法[J]. 电子科技大学学报,2003,32(1):39~42 Zhang Hui, Wu Bin, Yu Zhangguo, Research of new genetic algorithms involving mechanism of simulated annealing [J]. Journal of UEST of China, 2003,32(1):39~42(in Chinese) [9] Wanga Hsiao-Fan, Wu Kuang-Yao. Hybrid genetic algorithm for optimization problems with permutation property [J]. Computers & Operations Research, 2004,31:2453~2471 [10] 袁亚湘,孙文瑜.最优化理论与方法[M]. 北京:科学出版社, 1997.1 Yuan Yaxiang, Sun Wenyu. Optimization theories and methods [M]. Beijing:Science Press, 1997.1(in Chinese) [11] 陈宝林.最优化理论与算法[M]. 北京:清华大学出版社, 1989.420 Chen Baolin. Optimization theories and methods [M]. Tsinghua University Press, 1989.420(in Chinese) [12] 王 凌、郑大钟.混合优化策略统一结构的探讨[J]. 控制与决策,2002,17(1):33~40 Wang Ling, Zheng Dazhong. Study on unified framework of hybrid optimization strategies [J]. Control and Decision, 2002,17(1):33~40(in Chinese)
点击查看大图
计量
- 文章访问数: 2845
- HTML全文浏览量: 192
- PDF下载量: 862
- 被引次数: 0