[1] | LIU B D,YU J S,HAN D Y,et al. Complex equipment troubleshooting strategy generation based on Bayesian networks and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1354-1364 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0449. |
[2] | HE T Y,DONG Y,TAN L M,et al. Kinematic analysis and continuous gait planning of lunar-based equipment in walking state[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):308-316 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0232. |
[3] | YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0763. |
[4] | TONG G Y,WAN Y N,ZHANG L,et al. Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2995-3004 (in Chinese). doi: 10.13700/j.bh.1001-5965.2024.0130. |
[5] | XU Chang-hong, ZHANG Shu-sheng, HUANG Rui, LIANG Jia-chen, BIAN Rong. An adaptive NC process planning approach for pocket features driven by CAD/CAM models[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0564 |
[6] | CHANG Ju, LIU Xiao-dong, HE Ying. Complex equipment cost estimation model based on similarity weight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0840 |
[7] | HUANG X H,DONG S F,YANG X Y. Optimization of energy consumption on aviation biofuel derived from lignin[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):904-912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0347. |
[8] | SHENG Qi, SUN Rui, HE Yulin, ZHANG Hengyu. A robust adaptive positioning algorithm for GNSS/IMU based on 3D grid error modeling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0169 |
[9] | QIN H L,WU N,ZHAO C. Differential positioning with Doppler measurements from Iridium satellite signals of opportunity based on lines of sight correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):748-756 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0378. |
[10] | XU G Z,LIU G F,KUANG W,et al. Accurate license plate location based on synchronous vertex and body region detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):376-387 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0396. |
[11] | ZHANG Dong-ping, FU Zhen-tao, WANG Zhu-tao, LIN Li-li, WEI Ming. FE-SELDnet:Sound event Localization and detection network with enhanced feature expression[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0019 |
[12] | QIN Hong-lei, DENG Ruo-fan, LU: Hong-li. Single-station TLE estimation of NC-LEO satellite for space-based opportunistic positioning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0684 |
[13] | TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685 |
[14] | MENG G,HUANG H,WU W G,et al. Parasitic rotation of large stroke compliant micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):665-673 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0272. |
[15] | CHEN H Z,SUN R,QIU M,et al. An adaptive noise variance based fault detection algorithm for GNSS positioning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):406-421 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0222. |
[16] | LI L,FU M H,ZHANG T,et al. A workpiece location algorithm based on improved SSD[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1260-1269 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0442. |
[17] | SUN Yun, WANG Ying, LI Chao. Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800 |
[18] | ZHANG Fan, WEI Fajie, LI Quanbao. Risk source identification of complex equipment development project[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 975-980. doi: 10.13700/j.bh.1001-5965.2016.0368 |
[19] | Guo Jingyi, Sun Yufeng, Wu Hanxue, Zhao Guangyan. Decomposition method of equipment quality characteristic based on STT and fuzzy QFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8): 1090-1095. |
[20] | Wang Fei, Wei Fajie. Expert system on cost control for complex equipment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 490-494. |