Volume 43 Issue 8
Aug.  2017
Turn off MathJax
Article Contents
DU Ruofan, YAN Chao, HAN Zheng, et al. Performance of delayed functions in DDES for supersonic base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1585-1593. doi: 10.13700/j.bh.1001-5965.2016.0602(in Chinese)
Citation: DU Ruofan, YAN Chao, HAN Zheng, et al. Performance of delayed functions in DDES for supersonic base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1585-1593. doi: 10.13700/j.bh.1001-5965.2016.0602(in Chinese)

Performance of delayed functions in DDES for supersonic base flow

doi: 10.13700/j.bh.1001-5965.2016.0602
Funds:

National Natural Science Foundation of China 11402016

More Information
  • Corresponding author: YAN Chao, E-mail:yanchao@buaa.edu.cn
  • Received Date: 15 Jul 2016
  • Accepted Date: 11 Aug 2016
  • Publish Date: 20 Aug 2017
  • The DDES is a widely used approach among RANS/LES hybrid methods. It introduces the delayed function to ensure full RANS mode in the near-wall region, and has been proven to be quite efficient for separated flows. Up to date, various different delayed functions have been developed. However, the understanding to the performance and characteristics of different delayed functions still remains not comprehensive, especially lacking investigation on supersonic flows. The research focuses on the different delayed functions in the DDES methods by employing the supersonic base flow as the validation case. Through systematic comparisons with the experimental data and detailed analyses, the distributions and shielding behavior of different delayed functions together with resolving capabilities of different models are investigated. Studies show that there exist discrepancies in the shielding behavior and resolving capabilities between different delayed functions. Besides, DDES-F1 behaves appropriately in this supersonic separated flow and reproduces the experimental data very well, providing sufficient protection without impairing the model's numerical accuracy.

     

  • loading
  • [1]
    阎超, 于剑, 徐晶磊, 等.CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082

    YAN C, YU J, XU J L, et al.On the achievements and prospects for the methods of computational fluid dynamics[J].Advances in Mechanics, 2011, 41(5):562-589(in Chinese). doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082
    [2]
    SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R].Hanover:NASA Center for Aerospace Information, 2014.
    [3]
    FRÖHLICH J, VON TERZI D. Hybrid LES/RANS methods for the simulation of turbulent flows[J].Progress in Aerospace Sciences, 2008, 44(5):349-377. doi: 10.1016/j.paerosci.2008.05.001
    [4]
    SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference on DNS/LES, Advances in DNS/LES. Columbus:Greyden Press, 1997:137-147.
    [5]
    STRELETS M. Detached eddy simulation of massively separated flows:AIAA-2001-0879[R].Reston:AIAA, 2001.
    [6]
    SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202. doi: 10.1146/annurev.fluid.010908.165130
    [7]
    MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[C]//Turbulence, Heat and Mass Transfer 4. Redding:Begell House, Inc., 2003:625-632.
    [8]
    SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J].Theoretical and Computational Fluid Dynamics, 2006, 20:181-195. doi: 10.1007/s00162-006-0015-0
    [9]
    HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near wake of a cylindrical afterbody[J]. AIAA Journal, 1994, 32(1):77-83. doi: 10.2514/3.11953
    [10]
    BOURDON C J, DUTTON J C. Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows[J]. Physics of Fluids, 1999, 11(1):201-213. doi: 10.1063/1.869913
    [11]
    TUCKER P K, SHYY W. A numerical analysis of supersonic flow over an axisymmetric afterbody:AIAA-1993-2347[R]. Reston:AIAA, 1993.
    [12]
    FUREBY C, NILSSON Y, ANDERSSON K. Large eddy simulation of supersonic base flow:AIAA-1999-0426[R].Reston:AIAA, 1999.
    [13]
    PENG S H.Algebraic hybrid RANS/LES modelling applied to incompressible and compressible turbulent flows:AIAA-2006-3910[R].Reston:AIAA, 2006.
    [14]
    高瑞泽, 阎超.LES/RANS混合方法对超声速底部流动的应用[J].北京航空航天大学学报, 2011, 37(9):1095-1099. http://bhxb.buaa.edu.cn/CN/abstract/abstract12068.shtml

    GAO R Z, YAN C. LES/RANS hybrid method for supersonic axisymmetric base flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1095-1099(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12068.shtml
    [15]
    LUO D H, YAN C, WANG X Y. Computational study of supersonic turbulent-separated flows using partially averaged Navier-Stokes method[J].Acta Astronautica, 2015, 107:234-246. doi: 10.1016/j.actaastro.2014.11.029
    [16]
    SIMON F, DECK S, GUILLEN P, et al. Reynolds-averaged Nacier-Stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 2006, 44(11):2578-2590. doi: 10.2514/1.21366
    [17]
    郑玮琳, 阎超.XY-SAS模型中不同网格尺度限制器的影响分析[J].北京航空航天大学学报, 2014, 40(12):1725-1729. http://bhxb.buaa.edu.cn/CN/abstract/abstract13104.shtml

    ZHENG W L, YAN C. Influence analysis on grid scale limiter of XY-SAS model[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1725-1729(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13104.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(627) PDF downloads(410) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return