Li Jinghui, Kang Rui. Biased Monte Carlo method for reliability sensitivity analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6): 705-710,716. (in Chinese)
Citation: YANG Kunyu, HE Diqiu. Test analysis for ultrasonic assisted friction stir welding of aircraft skin aluminium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1987-1993. doi: 10.13700/j.bh.1001-5965.2016.0796(in Chinese)

Test analysis for ultrasonic assisted friction stir welding of aircraft skin aluminium alloy

doi: 10.13700/j.bh.1001-5965.2016.0796
Funds:

National Basic Research Program of China 2014CB046605

More Information
  • Corresponding author: HE Diqiu, E-mail:ytliangyong@sina.com
  • Received Date: 14 Oct 2016
  • Accepted Date: 25 Nov 2016
  • Publish Date: 20 Oct 2017
  • For the bottom of the weld, weak connection and other defects in the friction stir welding(FSW) of aircraft skin, due to the narrowing of the FSW process window, in order to explore a new method that is more suitable for long-range stable welding of large aircraft skin, skinned contrast test between ultrasonic assisted friction stir welding (UAFSW) and FSW were performed, UAFSW and FSW welding were carried out under the same process conditions using 2524-T3 aluminum alloy with thickness of 1.8 mm. Tensile test, metallographic test, and scanning electron microscopy were implemented for perfect UAFSW and FSW weld joints without internal defects. The results show that, compared with FSW weld joints, the UAFSW weld joint defect rate is significantly reduced, and the process window is expanded; the UAFSW weld surface texture is finer and free from laminations; the average tensile strength of UAFSW weld joints reaches 90.7% of strength of the base material, slightly higher than that of FSW weld joints; the average elongation of UAFSW weld joints is higher than FSW weld joints by about 20%. The study found that, compared with FSW, the addition of ultrasonic makes finer and more uniform microstructure for UAFSW weld joints, reduces grain size, and disrupts the regularity of the grains along the rolling direction, which makes the grain sequence show no clear direction.

     

  • [1]
    党晓民, 庞丽萍, 林贵平.基于地面实验的蒙皮换热器高空换热性能分析[J].北京航空航天大学学报, 2013, 39(4):474-477.

    DANG X M, PANG L P, LIN G P. High-altitude heat transfer performance analysis for skin heat exchanger based on ground experiment[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4):474-477(in Chinese).
    [2]
    刘兵, 彭超群, 王日初, 等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报, 2010, 20(9):1705-1713. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201009010.htm

    LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9):1705-1713(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201009010.htm
    [3]
    HE D, YANG K, LI M, et al.Comparison of single and double pass friction stir welding of skin-stringer aviation aluminium alloy[J].Science and Technology of Welding and Joining, 2013, 8(7):610-615. doi: 10.1179/1362171813Y.0000000147
    [4]
    THOMAS W M. Friction stir butt welding:PCT/GB92/02203[P].1991-12-08.
    [5]
    张丹丹, 曲文卿, 杨模聪, 等.Al-Li合金搅拌摩擦焊搭接接头的疲劳性能[J].北京航空航天大学学报, 2013, 39(5):674-678.

    ZHANG D D, QU W Q, YANG M C, et al.Fatigue property of Al-Li alloy friction stir welded lap joints[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):674-678(in Chinese).
    [6]
    YAN J H, SUTTON M A, REYNOLDS A P.Process-structure-property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds[J].Science and Technology of Welding and Joining, 2005, 10(6):725-736. doi: 10.1179/174329305X68778
    [7]
    LIU H J, ZHANG H J.Repair welding process of friction stir welding groove defect[J].Transactions Nonferrous Metal Society China, 2009, 19(3):563-567. doi: 10.1016/S1003-6326(08)60313-1
    [8]
    WU C S, ZHANG W B, SHI L, et al. Visualization and simulation of plastic material flow in friction stir welding of 2024 aluminium alloy plates[J].Transactions of Nonferrous Metals Society of China, 2012, 22(6):1445-1451. doi: 10.1016/S1003-6326(11)61339-3
    [9]
    贺地求, 梁建章. 超声搅拌焊接方法及其装置: 200610004059. 3[P]. 2006-01-26. HE D Q, LIANG J Z.

    The method and method and apparatus of ultrasonic-assisted friction-stir welding:200610004059.3[P].2006-01-26(in Chinese).
    [10]
    PARK K.Development and analysis of ultrasonic assisted friction stir welding process[D].Michigan:The University of Michigan, 2009:15-20.
    [11]
    LIU X C, WU C S, MICHAEL R, et al.Mechanical properties of 2024-T4 aluminum alloy joints in ultrasonic vibration enhanced friction stir welding[J].China Welding, 2013, 22(4):8-13.
    [12]
    AMINI S, AMIRI M R. Study of ultrasonic vibrations'effect on friction stir welding[J].International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):127-135. doi: 10.1007/s00170-014-5806-7
    [13]
    LAI R L, HE D Q, LIU L C.A study of the temperature field during ultrasonic-assisted friction-stir welding[J].International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):321-327. doi: 10.1007/s00170-014-5813-8
    [14]
    贺地求, 李剑, 李东辉, 等.铝合金超声搅拌复合焊接[J].焊接学报, 2011, 32(12):70-72.

    HE D Q, LI J, LI D H, et al. Study on ultrasonic stir hybrid welding of aluminum alloy[J].Transactions of the China Welding Institution, 2011, 32(12):70-72(In Chinese).
    [15]
    贺地求, 彭建红, 杨坤玉, 等.铝合金超声搅拌复合焊工艺及机理研究[J].中国有色金属学报, 2012, 22(10):2743-2748.

    HE D Q, PENG J H, YANG K Y, et al.Technology and mechanism of ultrasonic stir compound welding of aeronautical aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2012, 22(10):2743-2748(in Chinese).
    [16]
    YANG K Y, HE D Q, GAN H. Comparison of 2A12 aluminium alloy joint in ultrasonic assisted friction stir welding and friction stir welding[J].China Welding, 2014, 23(3):53-57.
  • Relative Articles

    [1]MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180.
    [2]ZHANG Z W,PENG C,CHE Z Y,et al. Servo drive unit reliability modeling with multi-stage degradation data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):692-704 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0200.
    [3]CHEN Jiayue, HE Zhenxue, ZHAO Xiaojun, WANG Yijin, ZHANG Xiaodan, WANG Xiang. Circuits Power Optimization of MPRM Logic Circuits Based on Multi-directional Balanced Movement Nutcracker Optimization Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0808
    [4]YANG S C,WANG X,CHEN F,et al. Advances in prognosis and health management technologies of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1490-1502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0296.
    [5]YANG Liangliang, WO Yang, LU Wenqi. Improved algorithm for motor feedforward parameter tuning based on instrumental variable method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0023
    [6]GUO Haoyu, WANG Shaoping, SHI Jian, ZHANG Yuwei. Digital twin-based health service framework and its application in permanent magnet synchronous motors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0110
    [7]KONG Lingwei, LI Weiqi. Optimization of aircraft speed vector control based on Hp adaptive Pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0405
    [8]LIU Y J,HAN W,SU X C,et al. Carrier aircraft landing scheduling problem based on improved gray wolf optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):803-813 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0280.
    [9]TANG Jingmin, HU Cheng, SONG Yaolian, YU Guicai. NOMA-Based Joint Optimization of Trajectory and Resources for UAV-Enable Integrated Sensing and Communication[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0275
    [10]ZHANG Yi, LI Juan, DAI Hongde, JIAO Xiaoxuan, QU Huiyan. Performance Degradation Prediction of Oxygen Concentrators Based on the FCM-ARIMAX Approach[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0418
    [11]CHEN Hong-kun, TAN Shu-jun, CUI Meng-zhen, LIU Yu-xi. A symplectic pseudo-spectral successive convex optimization method for trajectory planning of ascent stage of exo-atmosphere launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0052
    [12]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [13]YAN Y,MA X L. Air freight route planning based on transshipment under air alliance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):115-127 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0166.
    [14]DONG Jie, SU Yu-lin, ZHANG Da-cheng. Multi-level degradation-based prognostics for micro direct methanol fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0517
    [15]LI Z W,PENG M Y,GAO C Q,et al. Air combat maneuver trajectory prediction of target based on Volterra series optimized by SABA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):503-513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0287.
    [16]GUO Qing, HUANG Qi-lian, CHEN Jin-liang. Performance Degradation Modeling of Civil Aviation Engine Based on Component Characteristic Map Optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0341
    [17]XIA Y X,FANG Z G. Degradation-shock competing failure modeling considering randomness of failure threshold[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2079-2088 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0576.
    [18]PAN J X,JING B,JIAO X X,et al. Degradation modeling of oxygen concentrator in multiple stress coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):472-481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0260.
    [19]KANG Rui, LIU Haoran, ZHANG Qingyuan, YU Li, ZHAI Guofu. Function oriented belief reliability design and optimization of new torsion spring electrical connectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1745-1756. doi: 10.13700/j.bh.1001-5965.2022.0323
    [20]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
  • Cited by

    Periodical cited type(5)

    1. 闫啸家,梁伟阁,张钢,佘博,田福庆. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法. 系统工程与电子技术. 2023(03): 931-940 .
    2. 王玺,胡昌华,任子强,熊薇. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测. 航空学报. 2020(02): 195-205 .
    3. 贺志远,吕卫民,胡文林. 基于Wiener过程和Kalman修正的速率陀螺仪剩余寿命预测. 兵器装备工程学报. 2019(08): 53-58 .
    4. 雷耀麟,刘厦,胡炎,柴兴华. 无人机故障预测系统研究. 无线电工程. 2019(10): 866-870 .
    5. 潘广泽,张铮,罗琴,李小兵,王远航. 基于维纳过程和蒙特卡洛法的多元性能退化产品可靠性评估. 环境技术. 2019(S2): 107-111 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0601020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.5 %FULLTEXT: 14.5 %META: 84.2 %META: 84.2 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %其他: 0.3 %其他: 0.3 %Seattle: 0.1 %Seattle: 0.1 %上海: 0.7 %上海: 0.7 %六安: 0.1 %六安: 0.1 %北京: 4.2 %北京: 4.2 %南京: 0.3 %南京: 0.3 %南昌: 0.3 %南昌: 0.3 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %天津: 0.6 %天津: 0.6 %孝感: 0.3 %孝感: 0.3 %宣城: 0.1 %宣城: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.2 %张家口: 1.2 %成都: 0.3 %成都: 0.3 %扬州: 0.4 %扬州: 0.4 %日照: 0.1 %日照: 0.1 %永州: 0.3 %永州: 0.3 %江门: 0.1 %江门: 0.1 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 1.0 %济南: 1.0 %深圳: 17.5 %深圳: 17.5 %温州: 0.3 %温州: 0.3 %漯河: 1.0 %漯河: 1.0 %石家庄: 4.7 %石家庄: 4.7 %芒廷维尤: 22.9 %芒廷维尤: 22.9 %芝加哥: 0.1 %芝加哥: 0.1 %衡阳: 0.3 %衡阳: 0.3 %西宁: 36.7 %西宁: 36.7 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %长沙: 0.6 %长沙: 0.6 %其他其他Seattle上海六安北京南京南昌台州合肥天津孝感宣城广州张家口成都扬州日照永州江门沈阳洛阳济南深圳温州漯河石家庄芒廷维尤芝加哥衡阳西宁诺沃克运城邯郸郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(1112) PDF downloads(462) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return