CAI Jing, LI Yue, ZONG Yiming, et al. Aircraft tire-water film-pavement interaction on wet pavement in landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2382-2391. doi: 10.13700/j.bh.1001-5965.2016.0839(in Chinese)
Citation: CAI Jing, LI Yue, ZONG Yiming, et al. Aircraft tire-water film-pavement interaction on wet pavement in landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2382-2391. doi: 10.13700/j.bh.1001-5965.2016.0839(in Chinese)

Aircraft tire-water film-pavement interaction on wet pavement in landing

doi: 10.13700/j.bh.1001-5965.2016.0839
Funds:

National Natural Science Foundation of China 51508559

the Fundamental Research Funds for the Central Universities 3122014C013

Science and Technology Based Support Major Project of Tianjin 14ZCZDGX00001

Airport Engineering Research Base Open Fund KFJJ2017JCGC03

More Information
  • Corresponding author: CAI Jing, E-mail:caijing75@163.com
  • Received Date: 01 Nov 2016
  • Accepted Date: 16 Dec 2016
  • Publish Date: 20 Dec 2017
  • Based on hydrodynamic equilibrium equations of aircraft tire-water film-wet pavement interaction during the aircraft landing on the wet pavement, main influence factors of hydrodynamic pressures in tire-water film interaction were obtained. They are water film thickness, aircraft's taxiing speed and tire tread depth. On the basis of this result, three-dimensional solid model of tire-water film-pavement was established, in which the main tire of Boeing 737-800 was taken as the research object here. Then the finite element analysis model was established based on Fluent software. The water distribution and average hydrodynamic pressures on water attaining surface of the tire were obtained by volume of fluid (VOF) method and three main influence factors of hydrodynamic pressure were analyzed by above finite element model. Some conclusions can be drawn as follows. Water film thickness and taxiing speed of aircraft are two outstanding influence factors of hydrodynamic pressure and the hydrodynamic pressure linearly increases with the increase of water film and aircraft's taxiing speed. The hydrodynamic pressure increases faster at a water film thickness above 3mm, and at the water film thickness of 12 mm, the hydrodynamic pressure reaches and exceeds the tire pressure (1.47 MPa), which leads to hydroplaning of the aircraft's tire.When the taxiing velocity is less than 100 km/h, the hydrodynamic pressure is less than the tire pressure which means no hydroplaning risk for the aircraft. Based on the above analysis results, relational expression between the hydrodynamic pressure and water film thickness, aircraft's taxiing speed and tire tread depth was established. Considering the lift force during landing, the critical hydroplaning speeds and the length increment of landing distance of Boeing 737-800 were obtained under different rainfall conditions to provide important theoretical foundations for landing and safe taxiing of the aircraft.

     

  • [1]
    李少波, 张宏超, 孙立军.动水压力的形成与模拟测量[J].同济大学学报(自然科学版), 2007, 35(7):915-918.

    LI S B, ZHANG H C, SUN L J.Development and simulation measurement of dynamic hydraulic pressure[J].Journal of Tongji University(Natural Science), 2007, 35(7):915-918(in Chinese).
    [2]
    余治国, 李曙林, 朱青云.机轮动力滑水机理分析[J].空军工程大学学报(自然科学版), 2004, 17(5):9-11.

    YU Z G, LI S L, ZHU Q Y.Tire dynamic water skiing mechanism analysis[J].Journal of the Air Force Engineering University(Natural Science Edition), 2004, 17(5):9-11(in Chinese).
    [3]
    季天剑, 黄晓明, 刘清泉.部分滑水对路面附着系数的影响[J].交通运输工程学报[J].2003, 3(4):10-12.

    JI T J, HUANG X M, LIU Q Q.Part hydroplaning effect on pavement friction coefficient[J].Journal of Transportation Engineering, 2003, 3(4):10-12(in Chinese).
    [4]
    周海超. 花纹结构对轮胎花纹沟噪声和滑水性能影响规律及协同提升方法研究[D]. 镇江: 江苏大学, 2013: 32-35.

    ZHOU H C.Investigate into Influence of tire tread pattern on noise and hydroplaning and synchronously improving methods[D].Zhenjiang:Jiangsu University, 2013:32-35(in Chinese).
    [5]
    董斌, 唐伯明, 刘唐志, 等.基于Fluent软件的雨天潮湿路面滑水现象研究[J].武汉理工大学学报(交通科学与工程版), 2011, 35(4):710-713.

    DONG B, TANG B M, LIU T Z, et al.Hydroplaning research of wet highway pavement based on Fluent[J].Journal of Wuhan University of Technology(Transportation Science & Engineering), 2011, 35(4):710-713(in Chinese).
    [6]
    王国林, 金梁.轮胎滑水的CFD计算方法研究[J].计算力学学报, 2012, 29(4):594-598. doi: 10.7511/jslx201204021

    WANG G L, JIN L.Study on computational methods of tire hydroplaning using CFD[J].Chinese Journal of Computational Mechanics, 2012, 29(4):594-598(in Chinese). doi: 10.7511/jslx201204021
    [7]
    GILBERT A W, ROBERT E I.A systematic experimental analysis of significant parameters affecting model tire hydroplaning:NASA-CR-132346[R].Washington, D.C.:NASA, 1973.
    [8]
    KUMAR S S, ANUPAM K, SCARPAS T, et al.Study of hydroplaning risk on rolling and sliding passenger car[J].Social and Behavioral Sciences, 2012, 53(2290):1019-1027.
    [9]
    CHO J R, LEE H W, SOHN J S, et al.Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J].European Journal of Mechanics A/Solids, 2006, 25(6):914-926. doi: 10.1016/j.euromechsol.2006.02.007
    [10]
    WANG Y S, WU J, SU B L.Analysis on the hydroplaning of aircraft tire[J].Advanced Materials Research, 2010, 87-88:1-6.
    [11]
    HORNE W B, DREHER R C.Phenomena of pneumatic tire hydroplaning:NASA-TN-D-2056[R].Washington, D.C.:NASA, 1963:3-13.
    [12]
    VAN ES G W H.Hydroplaning of modern aircraft tires:NLR-TP-2001-242[R].Amsterdam:Netherlands Aerospace Center, 1999.
    [13]
    ONG G P, FWA T F.Transverse pavement grooving against hydroplaning and simulation model[J].Journal of Transportation Engineering, 2006, 132(6):441-448. doi: 10.1061/(ASCE)0733-947X(2006)132:6(441)
    [14]
    ONG G P, FWA T F.Prediction of wet-pavement skid resistance and hydroplaning potential[J].Transportation Research Record Journal of the Transportation Research Board, 2005(1):160-171. doi: 10.3141/2005-17
    [15]
    刘哲义.对影响轮胎与路面间附着性能因素的分析[J].公路, 2000, 16(6):48-51.

    LIU Z Y.The impact factors of between tire and road surface adhesion performance analysis[J].Highway, 2000, 16(6):48-51(in Chinese).
    [16]
    中国民用航空局飞行标准司. 航空承运人湿跑道和污染跑道运行管理规定: AC-121-FS-2009-33[S]. 北京: 中国民用航空局, 2009: 1-8.

    Flight Standards Department of Civil Aviation Administration of China.Wet the runway and pollution rules of operation and management with carrier in civil aviation:AC-121-FS-2009-33[S].Beijing:Civil Aviation Administration of China, 2009:1-8(in Chinese).
    [17]
    周维锋. 基于计算流体力学(CFD)水压力计算的数值模拟[D]. 重庆: 重庆交通大学, 2012: 41-48.

    ZHOU W F.Based on computational fluid dynamics (CFD) water pressure calculation of numerical simulation[D].Chongqing:Chongqing Jiaotong University Institute, 2012:41-48(in Chinese).
    [18]
    蔡靖, 王永繁, 李岳.基于轮组效应湿滑跑道飞机轮胎-水膜-相互作用研究[J].科学技术与工程, 2015, 15(11):116-124. doi: 10.3969/j.issn.1671-1815.2015.11.020

    CAI J, WANG Y F, LI Y.Research on aircraft tyres-water film interaction on the wet pavement based on wheel set of aircrafts[J].Science Technology and Engineering, 2015, 15(11):116-124(in Chinese). doi: 10.3969/j.issn.1671-1815.2015.11.020
    [19]
    中国民用航空局. 民用机场飞行区技术标准: MH 5001-2013[S]. 北京: 中国民用航空局, 2013: 17-18.

    Civil Aviation Administration of China.Technical standards for airfield area of civil airports:MH5001-2013[S].Beijing:Civil Aviation Administration of China, 2013:17-18(in Chinese).
    [20]
    季天剑. 降雨对轮胎和路面附着系数的影响[D]. 南京: 东南大学, 2004: 5-6.

    JI T J.Study on rain effect on tire-pavement friction coefficient[D].Nanjing:Southeast University, 2004:5-6(in Chinese).
  • Relative Articles

    [1]LU X,SUN Y N,TANG J,et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):478-486 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0029.
    [2]LI Y,ZHOU Z Y,CAI J. Extensible evaluation model of aircraft tire hydroplaning risk based on connection cloud[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):705-711 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0136.
    [3]CAI J,HUANG Y D,LI Q,et al. Simulation and analysis of SPH algorithm for interaction of aircraft tire-wet pavement[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):53-62 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0954.
    [4]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [5]FU Honglan, ZHANG Hao. Close robust rendezvous on distant retrograde orbits[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0560
    [6]KONG Lingwei, LI Weiqi. Optimization of aircraft speed vector control based on Hp adaptive Pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0405
    [7]ZHANG Yonghua, WANG Zheng, WANG Shiyu, BAI Yunfei, QIU Likuan. Robust Guidance Method for Reusable Rocket Landing Phase based on UMPSP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0491
    [8]LYU Yuzhu. Study on Flight Characteristics and Speed Limit of Helicopter with Slung Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0563
    [9]LI Yue, ZHANG Yao-hua, CAI Jing, REN Yi-nan. Influence on veer-off behavior of aircraft hydroplaning due to transverse uneven distributed water film on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0845
    [10]CHEN N T,MAN Y Z,LI J H. Risk assessment method for civil aircraft approach and landing at high plateau based on QAR data[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):77-85 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0186.
    [11]FENG X R,GAO Z D,WANG J,et al. Research on aircraft landing scheduling problem based on compact subsequence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2421-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0656.
    [12]CAI Jing, NIU Yu-fa, WANG Yan, LI Yue, DAI Xuan. A Simulation analysis of human-machine closed-loop dynamics of aircraft landing and running attitude under cross-rheumatic slip conditions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0599
    [13]ZONG H H,LI Y,CAI J,et al. Evaluation index of accumulated water-film on asphalt pavement considering safety of aircraft hydroplaning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):765-773 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0352.
    [14]ZHUANG Z B,WANG W H,TAI H D,et al. Influence of contrast threshold effect on runway visual range measurement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2906-2912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0040.
    [15]LI Y,ZONG H H,CAI J,et al. Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1099-1107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0402.
    [16]NI Yu-de, LI Xin-xin, LIU Rui-hua, GUO Jian-li, WANG Yan-yang. Delineation of the Instrument Landing System Localizer Protection Area[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0592
    [17]WANG Xiangzhang, WANG He, XU Bohao. Hard landing risk prediction of civil aircraft based on GBDT-GS method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0443
    [18]YAN Y F,GAN X S,WU Y R,et al. Aircraft landing safety quality analysis based on modified FRAM method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1964-1973 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0574.
    [19]LI Y,HU Y Q,CAI J,et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2299-2305 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0680.
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • Cited by

    Periodical cited type(9)

    1. 刘诗福,赵鸿铎,郝航程,凌建明. 机场智慧飞行区愿景与架构. 同济大学学报(自然科学版). 2025(01): 75-82 .
    2. 齐麟,杨帅,解镇州,金天昱,黄信. 基于时频分析的机场跑道平整度评价方法. 北京航空航天大学学报. 2024(04): 1110-1116 . 本站查看
    3. 朱晨辰,王彬文,刘小川,王计真,马晓利. 复杂环境下起落架动力学行为研究现状与展望. 航空科学技术. 2023(01): 1-11 .
    4. 白艳茹. 基于TPMS的轮胎智能感压充气装置设计. 现代电子技术. 2021(03): 83-86 .
    5. 桂荔,陈红英,林兰之. 民机运行效能评价指标体系研究. 科技与创新. 2021(05): 144-146 .
    6. 陈亚青,李洋,郑稀元,黄超. 动力学模型在飞机起飞性能中的应用研究及展望. 科技通报. 2021(11): 120-125 .
    7. 朱兴一,庞亚凤,杨健,赵鸿铎. 湿滑条件下基于真实纹理道面的机轮着陆滑水行为解析. 中国公路学报. 2020(10): 159-170 .
    8. 蔡靖,张恒,李岳,孙瑞强. 道面摩阻不平衡对飞机着陆滑行参数影响. 交通运输工程学报. 2018(05): 12-24 .
    9. 申爱琴,宋攀,郭寅川,李鹏. 基于COMSOL Multiphysics的路表瞬态动水压力数值仿真分析. 华南理工大学学报(自然科学版). 2018(11): 92-101 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(981) PDF downloads(495) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return