Citation: | SUN Jie, LI Min, SUN Binet al. Brittle fatigue damage model including initial damage and model verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2416-2421. doi: 10.13700/j.bh.1001-5965.2016.0869(in Chinese) |
Failure caused by fatigue damage is one of the most common failure modes of engineering structures. By using irreversible thermodynamics and microscopic damage mechanics, a new model of brittle fatigue damage based on brittle damage mechanism was proposed. A strict and detailed derivation of the new model including initial damage by using the stress amplitude and the characteristic parameters of damaged material as the dominating variables was given. An experiment on 12Cr1MoV steel was performed as an example. It is shown that the new model including the initial damage variable can be used to estimate the initial damage of the materials; the new model has significant advantages compared with similar fatigue damage models at the beginning of the fatigue process when the damage is very small, and meanwhile the new model can be applied in life prediction of the brittle material fatigue damage; the new model is simple, has small amount of parameters, and is in better agreement with the experimental results than similar models of fatigue damage.
[1] |
国家自然科学基金委数理科学部.力学学科发展研究报告[M].北京:科学出版社, 2007:89-92.
Division of Mathematics and Physics, NSFC.Report on the development of mechanics[M].Beijing:Science Press, 2007:89-92(in Chinese).
|
[2] |
WANG T J.A continuum damage model for ductile fracture of weld head affected zone[J].Engineering Fracture Mechanics, 1991, 40(6):1075-1082. doi: 10.1016/0013-7944(91)90172-W
|
[3] |
LEMAITRE J, DESMORAT R.Engineering damage mechanics[M].Berlin:Springer, 2005:26-75.
|
[4] |
KUMAR J, PRASAD K, KUMAR V.High-temperature low cycle fatigue damage assessment in near alpha IMI-834 titanium alloy[J].Fatigue and Fracture of Engineering Materials and Structures, 2011, 34(2):131-138. doi: 10.1111/ffe.2011.34.issue-2
|
[5] |
杨锋平, 孙秦, 罗金恒, 等.一个高周疲劳损伤演化修正模型[J].力学学报, 2012, 44(1):140-147. http://www.oalib.com/paper/4291031
YANG F P, SUN Q, LUO J H, et al.A corrected damage law for high cycle fatigue[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):140-147(in Chinese). http://www.oalib.com/paper/4291031
|
[6] |
关迪, 孙秦, 杨锋平.一个修正的金属材料低周疲劳损伤模型[J].固体力学学报, 2013, 34(6):571-578. http://www.oalib.com/paper/4264037
GUAN D, SUN Q, YANG F P.A modified low cycle fatigue damage model for metals[J].Chinese Journal of Solid Mechanics, 2013, 34(6):571-578(in Chinese). http://www.oalib.com/paper/4264037
|
[7] |
BROŽ P.Contemporary fatigue damage aspects[J].Procedia Engineering, 2010, 2(1):583-983. doi: 10.1016/j.proeng.2010.03.063
|
[8] |
CHABOCHE J L, LESNE P M.A non-linear continuous fatigue damage model[J].Fatigue and Fracture of Engineering Materials Structure, 1988, 11(1):1-17. doi: 10.1111/ffe.1988.11.issue-1
|
[9] |
FATEMI A, YANG L.Cumulative fatigue damage and life prediction theories:A survey of the state of the art homogeneous materials[J].International Journal of Fatigue, 1998, 20(1):9-34. doi: 10.1016/S0142-1123(97)00081-9
|
[10] |
GRANDA MARROQUÍN L E, HERNÁNDEZGÓMEZ L H, URRIOLAGOITIACALDERÓN G, et al.Cumulative damage evaluation under fatigue loading[J].Applied Mechanics and Materials, 2008, 13(14):141-150. https://www.scientific.net/AMM.13-14.141
|
[11] |
LEMAITRE J. 损伤力学教程[M]. 倪金刚, 陶春虎, 译. 北京: 科学出版社, 1996: 85-94.
LEMAITRE J.Damage mechanics tutorial[M].NI J G, TAO C H, translated.Beijing:Science Press, 1996:85-94(in Chinese).
|
[12] |
WANG T J.Unified CDM model and local criterion for ductile fracture[J].Engineering Fracture Mechanics, 1992, 42(1):177-183. doi: 10.1016/0013-7944(92)90289-Q
|
[13] |
KUNC R, PREBIL I.Low-cycle fatigue properties of steel 42CrMo4[J].Materials Science and Engineering A, 2003, 345(2):278-285. https://www.sciencedirect.com/science/article/pii/S0921509302004641
|
[14] |
CHANDRAKANTH S, PANDEY P C.An isotropic damage model for ductile material[J].Engineering Fracture Mechanics, 1995, 50(4):457-465. doi: 10.1016/0013-7944(94)00214-3
|
[15] |
杨晓华, 姚卫星, 段成美.确定性疲劳累积损伤理论进展[J].中国工程科学, 2003, 5(4):81-86. http://jz.docin.com/p-37984122.html
YANG X H, YAO W X, DUAN C M.The review of ascertainable fatigue cumulative damage rule[J].Engineering Science, 2003, 5(4):81-86(in Chinese). http://jz.docin.com/p-37984122.html
|
[16] |
尹双增.断裂·损伤理论及应用[M].北京:清华大学出版社, 1992:224-228.
YIN S Z.Fracture and damage theories and their application[M].Beijing:Tsinghua University Press, 1992:224-228(in Chinese).
|
[17] |
郑战光, 蔡敢为, 李兆军.一种新的疲劳损伤演化模型[J].工程力学, 2010, 27(2):37-40. http://www.oalib.com/paper/4187128
ZHENG Z G, CAI G W, LI Z J.A new model of fatigue damage evolution[J].Engineering Mechanics, 2010, 27(2):37-40(in Chinese). http://www.oalib.com/paper/4187128
|
[18] |
王卫国, 郑雯.12Cr1MoV钢低周疲劳损伤研究[J].材料科学与工艺, 2005, 13(2):193-195. http://www.wenkuxiazai.com/doc/a0830516f18583d0496459b9.html
WANG W G, ZHENG W.Research of low cycle fatigue damage of 12Cr1MoV steel[J].Materials Science and Technology, 2005, 13(2):193-195(in Chinese). http://www.wenkuxiazai.com/doc/a0830516f18583d0496459b9.html
|