Meng Yue, Li Lin, Li Qihanet al. Investigation of force under asymmetry stator wake[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(09): 1005-1008. (in Chinese)
Citation: SUN Jie, LI Min, SUN Binet al. Brittle fatigue damage model including initial damage and model verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2416-2421. doi: 10.13700/j.bh.1001-5965.2016.0869(in Chinese)

Brittle fatigue damage model including initial damage and model verification

doi: 10.13700/j.bh.1001-5965.2016.0869
Funds:

National Natural Science Foundation of China 11372320

More Information
  • Corresponding author: LI Min, E-mail:limin@buaa.edu.cn
  • Received Date: 14 Nov 2016
  • Accepted Date: 20 Jan 2017
  • Publish Date: 20 Dec 2017
  • Failure caused by fatigue damage is one of the most common failure modes of engineering structures. By using irreversible thermodynamics and microscopic damage mechanics, a new model of brittle fatigue damage based on brittle damage mechanism was proposed. A strict and detailed derivation of the new model including initial damage by using the stress amplitude and the characteristic parameters of damaged material as the dominating variables was given. An experiment on 12Cr1MoV steel was performed as an example. It is shown that the new model including the initial damage variable can be used to estimate the initial damage of the materials; the new model has significant advantages compared with similar fatigue damage models at the beginning of the fatigue process when the damage is very small, and meanwhile the new model can be applied in life prediction of the brittle material fatigue damage; the new model is simple, has small amount of parameters, and is in better agreement with the experimental results than similar models of fatigue damage.

     

  • [1]
    国家自然科学基金委数理科学部.力学学科发展研究报告[M].北京:科学出版社, 2007:89-92.

    Division of Mathematics and Physics, NSFC.Report on the development of mechanics[M].Beijing:Science Press, 2007:89-92(in Chinese).
    [2]
    WANG T J.A continuum damage model for ductile fracture of weld head affected zone[J].Engineering Fracture Mechanics, 1991, 40(6):1075-1082. doi: 10.1016/0013-7944(91)90172-W
    [3]
    LEMAITRE J, DESMORAT R.Engineering damage mechanics[M].Berlin:Springer, 2005:26-75.
    [4]
    KUMAR J, PRASAD K, KUMAR V.High-temperature low cycle fatigue damage assessment in near alpha IMI-834 titanium alloy[J].Fatigue and Fracture of Engineering Materials and Structures, 2011, 34(2):131-138. doi: 10.1111/ffe.2011.34.issue-2
    [5]
    杨锋平, 孙秦, 罗金恒, 等.一个高周疲劳损伤演化修正模型[J].力学学报, 2012, 44(1):140-147.

    YANG F P, SUN Q, LUO J H, et al.A corrected damage law for high cycle fatigue[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):140-147(in Chinese).
    [6]
    关迪, 孙秦, 杨锋平.一个修正的金属材料低周疲劳损伤模型[J].固体力学学报, 2013, 34(6):571-578.

    GUAN D, SUN Q, YANG F P.A modified low cycle fatigue damage model for metals[J].Chinese Journal of Solid Mechanics, 2013, 34(6):571-578(in Chinese).
    [7]
    BROŽ P.Contemporary fatigue damage aspects[J].Procedia Engineering, 2010, 2(1):583-983. doi: 10.1016/j.proeng.2010.03.063
    [8]
    CHABOCHE J L, LESNE P M.A non-linear continuous fatigue damage model[J].Fatigue and Fracture of Engineering Materials Structure, 1988, 11(1):1-17. doi: 10.1111/ffe.1988.11.issue-1
    [9]
    FATEMI A, YANG L.Cumulative fatigue damage and life prediction theories:A survey of the state of the art homogeneous materials[J].International Journal of Fatigue, 1998, 20(1):9-34. doi: 10.1016/S0142-1123(97)00081-9
    [10]
    GRANDA MARROQUÍN L E, HERNÁNDEZGÓMEZ L H, URRIOLAGOITIACALDERÓN G, et al.Cumulative damage evaluation under fatigue loading[J].Applied Mechanics and Materials, 2008, 13(14):141-150.
    [11]
    LEMAITRE J. 损伤力学教程[M]. 倪金刚, 陶春虎, 译. 北京: 科学出版社, 1996: 85-94.

    LEMAITRE J.Damage mechanics tutorial[M].NI J G, TAO C H, translated.Beijing:Science Press, 1996:85-94(in Chinese).
    [12]
    WANG T J.Unified CDM model and local criterion for ductile fracture[J].Engineering Fracture Mechanics, 1992, 42(1):177-183. doi: 10.1016/0013-7944(92)90289-Q
    [13]
    KUNC R, PREBIL I.Low-cycle fatigue properties of steel 42CrMo4[J].Materials Science and Engineering A, 2003, 345(2):278-285.
    [14]
    CHANDRAKANTH S, PANDEY P C.An isotropic damage model for ductile material[J].Engineering Fracture Mechanics, 1995, 50(4):457-465. doi: 10.1016/0013-7944(94)00214-3
    [15]
    杨晓华, 姚卫星, 段成美.确定性疲劳累积损伤理论进展[J].中国工程科学, 2003, 5(4):81-86.

    YANG X H, YAO W X, DUAN C M.The review of ascertainable fatigue cumulative damage rule[J].Engineering Science, 2003, 5(4):81-86(in Chinese).
    [16]
    尹双增.断裂·损伤理论及应用[M].北京:清华大学出版社, 1992:224-228.

    YIN S Z.Fracture and damage theories and their application[M].Beijing:Tsinghua University Press, 1992:224-228(in Chinese).
    [17]
    郑战光, 蔡敢为, 李兆军.一种新的疲劳损伤演化模型[J].工程力学, 2010, 27(2):37-40.

    ZHENG Z G, CAI G W, LI Z J.A new model of fatigue damage evolution[J].Engineering Mechanics, 2010, 27(2):37-40(in Chinese).
    [18]
    王卫国, 郑雯.12Cr1MoV钢低周疲劳损伤研究[J].材料科学与工艺, 2005, 13(2):193-195.

    WANG W G, ZHENG W.Research of low cycle fatigue damage of 12Cr1MoV steel[J].Materials Science and Technology, 2005, 13(2):193-195(in Chinese).
  • Relative Articles

    [1]DENG S Y,SUN R,ZHANG L D,et al. Protection level optimization method of ARAIM algorithm for urban road safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):222-234 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1020.
    [2]ZHOU X,ZHENG N S,DING R,et al. An improved inversion method of forest biomass based on satellite GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2619-2626 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0654.
    [3]WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529.
    [4]ZHAO Gui-ling, WANG Jin-bao, JIANG Zi-hao, GAO Shuai. A GNSS/SINS fault detection and robust adaptive algorithm based on two parameters[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0822
    [5]WANG F,ZHENG Q,YANG D K,et al. River parameter measurement research by GNSS-reflectometry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3771-3779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0912.
    [6]HUANG Mingming, SUN Rui. LiDAR aided GNSS/IMU positioning algorithm based on improved point cloud registration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0837
    [7]ZHANG Y,WANG Y,ZHOU S H,et al. Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):695-705 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0298.
    [8]LIU Z W,SUN R,JIANG L. Robust adaptive position algorithm for GNSS/IMU based on pseudorange residual and innovation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1316-1324 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0389.
    [9]SONG Yuan, HUANG Zhi-gang, LI Rui, WANG Yue-chen, SHEN Jun, WANG Yong-chao, NIE Xin. An RTK integrity evaluation method based on risk probability decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024-0134
    [10]ZHANG Yun, LU Qi, ZHANG Yue-wei, QIN Gan-yao, HU Xiu-qing, YANG Guang-lin. Spaceborne GNSS-R sea surface height inversion model using FY-3E[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0540
    [11]ZHEN Jia-huan, ZHU Yun-long, YANG Dong-kai, ZHANG Guo-dong, WANG Feng. Detection of typhoons and estimation of eye position using satellite-based GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0395
    [12]JIANG L,SUN R,LIU Z W,et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1533-1542 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0476.
    [13]MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271.
    [14]WU S Y,YANG D K,WANG F,et al. GNSS-R BSAR range-Doppler imaging algorithm based on synchronization of direct and echo signal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):588-596 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0310.
    [15]YANG W T,XU T H,WANG N Z,et al. Influence of open water in retrieval of soil moisture by spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1779-1786 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0479.
    [16]HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0777.
    [17]NING Bao-jiao, WANG Na-zi, JING Li-li, GAO Fan, KONG Ya-hui, HE Yun-jiao. Research on the retrieval model of shore-based GNSS-R code altimetry[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0213
    [18]CHEN J J,YUAN H,XU Y,et al. GNSS instantaneous attitude determination method based on multi-variable constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1394-1401 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0453.
    [19]JI Li, SUN Rui, WANG Yuan-yuan, DAI Ye-ying. Heading enhancement algorithm of GNSS/IMU integrated navigation based on dual-antenna TDCP[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0440
    [20]LONG Yuan, DENG Xiaolong, YANG Xixiang, HOU Zhongxi. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(909) PDF downloads(457) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return