Citation: | LI Houzhenqiang, ZHANG Yadong, ZHANG Jinhua, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959(in Chinese) |
In order to obtain a more realistic mesoscopic analysis model of closed-cell aluminum foam, a new methodology for the finite element modeling based on computed tomography (CT) images is presented. First, the optimal threshold between base material and air was developed using Otsu algorithm by analyzing the images obtained from the CT scanning of closed-cell aluminum foam. Then, the mesoscopic finite element model was directly established based on the thought of mapping grid. As a result, the reconstruction of three-dimensional mesoscopic analysis model of metal foams is achieved. Finally, the numerical simulations of quasi-static compression and dynamic test of closed-cell foam are carried out respectively based on the mesoscopic analysis model. The results demonstrate that the internal deformation of closed-cell aluminum foam distributes throughout the whole specimen, which is closely bound up with their 3D structure under quasi-static compression, while it is close to the loading end and remarkably behaves with localization under dynamic compression. The methodology of modeling can describe mesoscopic structure realistically and provide a more detailed simulation analysis on the stress state, deformation and failure of closed-cell aluminum foams under quasi-static and dynamic loading.
[1] |
GIBSON L J, ASHBY M F.Cellular solids:Structure and properties[M].Cambridge:Cambridge University Press, 1999:6-11.
|
[2] |
BANHART J.Manufacture characterization and application of cellular metals and metal foams[J].Progress in Materials Science, 2001, 46(6):559-632. doi: 10.1016/S0079-6425(00)00002-5
|
[3] |
MAGNUCKA B E, MAGNUCKI K. Effective design of a sandwich beam with a metal foam core[J].Thin-Walled Structures, 2007, 45(4):432-438. doi: 10.1016/j.tws.2007.03.005
|
[4] |
YUJ L, LI J R, HU S S.Strain-rate effect and micro-structural optimization of cellular metals[J].Mechanics of Materials, 2006, 38(1):160-170. https://www.sciencedirect.com/science/article/pii/S0142941810001455
|
[5] |
DESHPANDE V S, FLECK N A.High strain rate compressive behavior of aluminum alloy foams[J].International Journal of Impact Engineering, 2000, 24(3):277-298. doi: 10.1016/S0734-743X(99)00153-0
|
[6] |
MEGUID S A, CHEON S S, EI-ABBASI N.FE modelling of deformation localization in metallic foams[J].Finite Elements in Analysis and Design, 2002, 38(7):631-643. doi: 10.1016/S0168-874X(01)00096-8
|
[7] |
NAMMI S K, MYLER P, EDWARDS G.Finite element analysis of closed-cell aluminum foam under quasi-static loading[J].Materials & Design, 2010, 31(2):712-722.
|
[8] |
ZHU H X, KNOTT J F, MILLS N J.Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells[J].Journal of the Mechanics and Physics of Solids, 1997, 45(3):319-343. doi: 10.1016/S0022-5096(96)00090-7
|
[9] |
DE GIORGI M, CAROFALO A, DATTOMA V, et al.Aluminum foams structural modelling[J].Computers & Structures, 2010, 88(1):25-35.
|
[10] |
刘培生.关于多孔材料的新模型[J].材料研究学报, 2009, 20(1):64-68. http://cn.comsol.com/release/5.3a/nonlinear-structural-materials-module
LIU P S.A new model for porous materials[J].Chinese Journal of Materials Research, 2009, 20(1):64-68(in Chinese). http://cn.comsol.com/release/5.3a/nonlinear-structural-materials-module
|
[11] |
刘培生, 夏凤金, 罗军.多孔材料模型分析[J].材料工程, 2009(7):83-87. http://www.cqvip.com/qk/94928X/200901/29673865.html
LIU P S, XIA F J, LUO J.Analyses of the classical model for porous materials[J].Journal of Material Engineering, 2009(7):83-87(in Chinese). http://www.cqvip.com/qk/94928X/200901/29673865.html
|
[12] |
ZHANG C Y, TANG L Q, YANG B, et al.Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams[J].Computational Materials Science, 2013, 79:45-51. doi: 10.1016/j.commatsci.2013.05.046
|
[13] |
ZHENG Z J, WANG C, YU J L, et al.Dynamic stress-strain states for metal foams using a 3D cellular model[J].Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. doi: 10.1016/j.jmps.2014.07.013
|
[14] |
LI Z, ZHANG J, FAN J, et al.On crushing response of the three-dimensional closed-cell foam based on Voronoi model[J].Mechanics of Materials, 2014, 68:85-94. doi: 10.1016/j.mechmat.2013.08.009
|
[15] |
CAROFALO A, DE GIORGI M, MORABITO A, et al.Geometric modelling of metallic foams[J].Engineering Computations, 2013, 30(7):924-935. doi: 10.1108/EC-06-2011-0070
|
[16] |
FANG Q, ZHANG J H, LIU J C, et al.Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact[J].Composite Structures, 2015, 124:409-420. doi: 10.1016/j.compstruct.2015.01.001
|
[17] |
FANG Q, ZHANG J H, ZHANG Y D, et al.A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings[J].International Journal of Impact Engineering, 2015, 82:103-112. doi: 10.1016/j.ijimpeng.2014.10.009
|
[18] |
MAIRE E, FAZEKAS A, SALVO L, et al.X-ray tomography applied to the characterization of cellular materials related finite element modeling problems[J].Composites Science and Technology, 2003, 63(16):2431-2443. doi: 10.1016/S0266-3538(03)00276-8
|
[19] |
MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(2):150-158. doi: 10.1111/jmi.2006.223.issue-2
|
[20] |
JEON I, ASAHINA T, KANG K J, et al.Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J].Mechanics of Materials, 2010, 42(3):227-236. doi: 10.1016/j.mechmat.2010.01.003
|
[21] |
SUN Y L, LI Q M, LOWE T, et al.Investigation of strain-rate effect on the compressive behavior of closed-cell aluminum foam by 3D image-based modelling[J].Materials & Design, 2016, 89:215-224. https://www.sciencedirect.com/science/article/pii/S0921509313012306
|
[22] |
JEON I, ASAHINA T.The effect of structural defects on the compressive behavior of closed-cell Al foam[J].Acta Materialia, 2005, 53(12):3415-3423. doi: 10.1016/j.actamat.2005.04.010
|
[23] |
TURBELL H.Cone-beam reconstruction using filtered back projection[D].Linkping:Linkping University, 2001.
|
[24] |
韩思奇, 王蕾.图像分割的阈值法综述[J].系统工程与电子技术, 2002, 24(6):91-94. https://www.wenkuxiazai.com/doc/fbca569a51e79b89680226c5.html
HAN S Q, WANG L.A survey of thresholding methods for image segmentation[J].Systems Engineering and Electronics, 2002, 24(6):91-94(in Chinese). https://www.wenkuxiazai.com/doc/fbca569a51e79b89680226c5.html
|
[25] |
MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(Pt 2):150-158.
|
[26] |
HALLQUISTJ O.LS-DYNA keyword user's manual[Z].Livermore:Livermore Software Technology Corporation, 2015.
|
[27] |
JEON I, KATOU K, SONODA T, et al.Cell wall mechanical properties of closed-cell Al foam[J].Mechanics of Materials, 2009, 41(1):60-73. doi: 10.1016/j.mechmat.2008.08.002
|
[28] |
李妍妍, 郑志军, 虞吉林, 等.闭孔泡沫金属变形模式的有限元分析[J].爆炸与冲击, 2014, 34(4):464-470. doi: 10.11883/1001-1455(2014)04-0464-07
LI Y Y, ZHENG Z J, YU J L, et al.Finite element analysis on deformation modes of closed-cell metallic foam[J].Explosion and Shock Waves, 2014, 34(4):464-470(in Chinese). doi: 10.11883/1001-1455(2014)04-0464-07
|