Citation: | LI Houzhenqiang, ZHANG Yadong, ZHANG Jinhua, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959(in Chinese) |
In order to obtain a more realistic mesoscopic analysis model of closed-cell aluminum foam, a new methodology for the finite element modeling based on computed tomography (CT) images is presented. First, the optimal threshold between base material and air was developed using Otsu algorithm by analyzing the images obtained from the CT scanning of closed-cell aluminum foam. Then, the mesoscopic finite element model was directly established based on the thought of mapping grid. As a result, the reconstruction of three-dimensional mesoscopic analysis model of metal foams is achieved. Finally, the numerical simulations of quasi-static compression and dynamic test of closed-cell foam are carried out respectively based on the mesoscopic analysis model. The results demonstrate that the internal deformation of closed-cell aluminum foam distributes throughout the whole specimen, which is closely bound up with their 3D structure under quasi-static compression, while it is close to the loading end and remarkably behaves with localization under dynamic compression. The methodology of modeling can describe mesoscopic structure realistically and provide a more detailed simulation analysis on the stress state, deformation and failure of closed-cell aluminum foams under quasi-static and dynamic loading.
[1] |
GIBSON L J, ASHBY M F.Cellular solids:Structure and properties[M].Cambridge:Cambridge University Press, 1999:6-11.
|
[2] |
BANHART J.Manufacture characterization and application of cellular metals and metal foams[J].Progress in Materials Science, 2001, 46(6):559-632. doi: 10.1016/S0079-6425(00)00002-5
|
[3] |
MAGNUCKA B E, MAGNUCKI K. Effective design of a sandwich beam with a metal foam core[J].Thin-Walled Structures, 2007, 45(4):432-438. doi: 10.1016/j.tws.2007.03.005
|
[4] |
YUJ L, LI J R, HU S S.Strain-rate effect and micro-structural optimization of cellular metals[J].Mechanics of Materials, 2006, 38(1):160-170.
|
[5] |
DESHPANDE V S, FLECK N A.High strain rate compressive behavior of aluminum alloy foams[J].International Journal of Impact Engineering, 2000, 24(3):277-298. doi: 10.1016/S0734-743X(99)00153-0
|
[6] |
MEGUID S A, CHEON S S, EI-ABBASI N.FE modelling of deformation localization in metallic foams[J].Finite Elements in Analysis and Design, 2002, 38(7):631-643. doi: 10.1016/S0168-874X(01)00096-8
|
[7] |
NAMMI S K, MYLER P, EDWARDS G.Finite element analysis of closed-cell aluminum foam under quasi-static loading[J].Materials & Design, 2010, 31(2):712-722.
|
[8] |
ZHU H X, KNOTT J F, MILLS N J.Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells[J].Journal of the Mechanics and Physics of Solids, 1997, 45(3):319-343. doi: 10.1016/S0022-5096(96)00090-7
|
[9] |
DE GIORGI M, CAROFALO A, DATTOMA V, et al.Aluminum foams structural modelling[J].Computers & Structures, 2010, 88(1):25-35.
|
[10] |
刘培生.关于多孔材料的新模型[J].材料研究学报, 2009, 20(1):64-68.
LIU P S.A new model for porous materials[J].Chinese Journal of Materials Research, 2009, 20(1):64-68(in Chinese).
|
[11] |
刘培生, 夏凤金, 罗军.多孔材料模型分析[J].材料工程, 2009(7):83-87.
LIU P S, XIA F J, LUO J.Analyses of the classical model for porous materials[J].Journal of Material Engineering, 2009(7):83-87(in Chinese).
|
[12] |
ZHANG C Y, TANG L Q, YANG B, et al.Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams[J].Computational Materials Science, 2013, 79:45-51. doi: 10.1016/j.commatsci.2013.05.046
|
[13] |
ZHENG Z J, WANG C, YU J L, et al.Dynamic stress-strain states for metal foams using a 3D cellular model[J].Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. doi: 10.1016/j.jmps.2014.07.013
|
[14] |
LI Z, ZHANG J, FAN J, et al.On crushing response of the three-dimensional closed-cell foam based on Voronoi model[J].Mechanics of Materials, 2014, 68:85-94. doi: 10.1016/j.mechmat.2013.08.009
|
[15] |
CAROFALO A, DE GIORGI M, MORABITO A, et al.Geometric modelling of metallic foams[J].Engineering Computations, 2013, 30(7):924-935. doi: 10.1108/EC-06-2011-0070
|
[16] |
FANG Q, ZHANG J H, LIU J C, et al.Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact[J].Composite Structures, 2015, 124:409-420. doi: 10.1016/j.compstruct.2015.01.001
|
[17] |
FANG Q, ZHANG J H, ZHANG Y D, et al.A 3D mesoscopic model for the closed-cell metallic foams subjected to static and dynamic loadings[J].International Journal of Impact Engineering, 2015, 82:103-112. doi: 10.1016/j.ijimpeng.2014.10.009
|
[18] |
MAIRE E, FAZEKAS A, SALVO L, et al.X-ray tomography applied to the characterization of cellular materials related finite element modeling problems[J].Composites Science and Technology, 2003, 63(16):2431-2443. doi: 10.1016/S0266-3538(03)00276-8
|
[19] |
MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(2):150-158. doi: 10.1111/jmi.2006.223.issue-2
|
[20] |
JEON I, ASAHINA T, KANG K J, et al.Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J].Mechanics of Materials, 2010, 42(3):227-236. doi: 10.1016/j.mechmat.2010.01.003
|
[21] |
SUN Y L, LI Q M, LOWE T, et al.Investigation of strain-rate effect on the compressive behavior of closed-cell aluminum foam by 3D image-based modelling[J].Materials & Design, 2016, 89:215-224.
|
[22] |
JEON I, ASAHINA T.The effect of structural defects on the compressive behavior of closed-cell Al foam[J].Acta Materialia, 2005, 53(12):3415-3423. doi: 10.1016/j.actamat.2005.04.010
|
[23] |
TURBELL H.Cone-beam reconstruction using filtered back projection[D].Linkping:Linkping University, 2001.
|
[24] |
韩思奇, 王蕾.图像分割的阈值法综述[J].系统工程与电子技术, 2002, 24(6):91-94.
HAN S Q, WANG L.A survey of thresholding methods for image segmentation[J].Systems Engineering and Electronics, 2002, 24(6):91-94(in Chinese).
|
[25] |
MCDONALD S A, MMMMERY P M, JOHNSON G, et al.Characterization of the three-dimensional structure of a metallic foam during compressive deformation[J].Journal of Microscopy, 2006, 223(Pt 2):150-158.
|
[26] |
HALLQUISTJ O.LS-DYNA keyword user's manual[Z].Livermore:Livermore Software Technology Corporation, 2015.
|
[27] |
JEON I, KATOU K, SONODA T, et al.Cell wall mechanical properties of closed-cell Al foam[J].Mechanics of Materials, 2009, 41(1):60-73. doi: 10.1016/j.mechmat.2008.08.002
|
[28] |
李妍妍, 郑志军, 虞吉林, 等.闭孔泡沫金属变形模式的有限元分析[J].爆炸与冲击, 2014, 34(4):464-470. doi: 10.11883/1001-1455(2014)04-0464-07
LI Y Y, ZHENG Z J, YU J L, et al.Finite element analysis on deformation modes of closed-cell metallic foam[J].Explosion and Shock Waves, 2014, 34(4):464-470(in Chinese). doi: 10.11883/1001-1455(2014)04-0464-07
|
[1] | HU YaoWei, SHANG YunBin, HE Xi, YIN JinTao, JIANG ShengJu, LEI JuanMian. Wind Tunnel Experiment and Numerical Simulation on the Magnus Effect of Rotating Wing-body Combination[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0830 |
[2] | FU Yangaoxiao, MEI Jie, DING Mingsong, CHEN Jianqiang, JIANG Tao, DONG Weizhong. Numerical simulation of jet interaction heating on reusable launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0053 |
[3] | HE Q S,SUN S R. Real gas effect of inflatable reentry decelerator on windward side[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):816-823 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0093. |
[4] | BAI Xiao-tian, ZHANG Zhao-nan, SHI Huai-tao, ZHANG Xiao-chen. Study on the Identification of Sub-surface Mesoscopic Fault Scales of Full Ceramic Ball Bearings Based on Strain Energy Theory on the Outer Ring[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0715 |
[5] | LIN Sen, CHA Zi-yue. Nighttime image dehazing based on non-uniform atmospheric light correction model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0437 |
[6] | MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443 |
[7] | LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693. |
[8] | CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627. |
[9] | LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813. |
[10] | GAO B H,QI H,SHI J W,et al. Multi-parameter reconstruction of soot flame based on active and passive tomography[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1135-1147 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0386. |
[11] | LIU S,LU H Y,ZHANG W W,et al. Fast algorithm for grain burnback of actually shaped grains of solid motor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3115-3123 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0795. |
[12] | WANG Zhen, ZHONG Wei, WANG Tong-guang, LI Xu-dong, ZHANG Hong-ying. Numerical simulation of unsteady aerodynamic characteristics of parafoil airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0184 |
[13] | GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683. |
[14] | XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494. |
[15] | PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152. |
[16] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[17] | HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335. |
[18] | WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140 |
[19] | ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154 |
[20] | WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039 |
1. | 牛杰,和西民,曹少俊,刘雄飞. 基于X-CT的泡沫铝孔隙结构及变形行为分析. 包装工程. 2025(05): 265-271 . ![]() | |
2. | 李成兵,叶强,张吉涛,李锐,李仁富. 基于真实结构的泡沫铝建模方法. 塑性工程学报. 2023(05): 126-134 . ![]() | |
3. | 周勇,薛斌,郭昀鑫,王人鹏. 基于μCT图像的PVC泡沫微观试样几何模型生成算法. 北京航空航天大学学报. 2022(06): 968-978 . ![]() | |
4. | 陈莹,陈小伟. 改进的Whipple防护结构与相关数值模拟方法研究进展. 爆炸与冲击. 2021(02): 33-59 . ![]() | |
5. | 张红英,欧阳八生,朱国军. 泡沫铝材料的研究与应用. 粉末冶金技术. 2021(01): 69-75 . ![]() | |
6. | 崔宇,王丽,徐晓辰,徐广晨. 闭孔泡沫铝准静态压缩试验的有限元仿真. 有色金属材料与工程. 2021(02): 9-12 . ![]() | |
7. | 戴开达,吴东旭,张志成,陈鹏万. 闭孔泡沫铝压缩力学性能的实验和三维有限元模拟. 北京理工大学学报. 2021(06): 579-587 . ![]() | |
8. | 贾然,赵桂平. 泡沫铝本构行为研究进展. 力学学报. 2020(03): 603-622 . ![]() |