Citation: | YANG Xiaoyi, WANG Zhichao, LIU Ziyu, et al. Thermal stability and heat sink of microalgae aviation fuels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 223-228. doi: 10.13700/j.bh.1001-5965.2017.0053(in Chinese) |
The thermal stability and heat sink of aviation fuel play an important role in the reliability, safety and performance of aircraft and engine. Two types of typical microalgae aviation fuel were investigated to assess thermal stability and heat sink by thermo-gravimetric-differential scanning calorimetry in comparison with the standard turbine jetfuels RP-3. The results show that the temperatures of the end point and maximum weight loss point are higher than that of the standard turbine jetfuels RP-3, which indicates that heat sink includes both physical heat sink and chemical heat sink in weight loss interval. The thermo-gravimetric curve defines two dimensionless parameters including initiation temperature and burnout index, which represent the initial decomposition temperature and the deposition characteristics respectively. The combination of the two parameters can be used to assess the thermal stability and heat sink. Isochrysis based blend aviation fuel presented the carbon deposit with the increase of heat sink, while chlorella based blend aviation fuel did not present the carbon deposit with the increase of heat sink. The results indicate that optimizing the composition of alkane with high carbon number could increase heat sink and decrease carbon deposit. It is feasible both theoretically and technically.
[1] |
赵晶, 郭放, 阿鲁斯, 等.未来航空燃料原料可持续性研究[J].北京航空航天大学学报, 2016, 42(11):2378-2385. http://bhxb.buaa.edu.cn/CN/abstract/abstract13754.shtml
ZHAO J, GUO F, A L S, et al. Evaluation of the sustainable feedstock for alternative aviation fuels[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(11):2378-2385(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13754.shtml
|
[2] |
任海涛, 郭放, 杨晓奕.中国微藻航空煤油制备潜能及CO2减排[J].北京航空航天大学学报, 2016, 42(5):912-919. http://bhxb.buaa.edu.cn/CN/abstract/abstract13400.shtml
REN H T, GUO F, YANG X Y.Potential production of microalgae bio-jet fuel and CO2 emissions reduction in China[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):912-919(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13400.shtml
|
[3] |
贾春燕, 王洪铭.航空发动机燃烧室喷嘴内部燃油结焦研究[J].航空发动机, 2011, 37(5):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201105012
JIA C Y, WANG H M.Investigate on fuel coke in nozzle of aeroengine combustor[J].Aeroengine, 2011, 37(5):41-44(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201105012
|
[4] |
范启明, 米镇涛, 于燕.高超音速推进用吸热型烃类燃料的热稳定性研究Ⅰ.热氧化与热裂解沉积[J].燃料化学学报, 2002, 30(1):78-82. doi: 10.3969/j.issn.0253-2409.2002.01.017
FAN Q M, MI Z T, YU Y.Study on thermal stability of endothermic hydrocarbon fuels for hypersonic propulsionⅠ.Thermal oxidation & pyrolytic deposit[J].Journal of Fuel Chemistry and Technology, 2002, 30(1):78-82(in Chinese). doi: 10.3969/j.issn.0253-2409.2002.01.017
|
[5] |
张冬梅, 张怀安, 曹文杰, 等.喷气燃料热安定性对飞机发动机的影响[J].航空制造技术, 2008(13):91-93. doi: 10.3969/j.issn.1671-833X.2008.13.018
ZHANG D M, ZHANG H A, CAO W J, et al.Effects of the heat stability of the jet fuels on the aeroengine[J].Aeronautical Manufacturing Technology, 2008(13):91-93(in Chinese). doi: 10.3969/j.issn.1671-833X.2008.13.018
|
[6] |
范启明. 高超音速推进用吸热型烃类燃料的氧化与裂解过程研究[D]. 天津: 天津大学, 2002: 5-20. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540334
FAN Q M. Study on oxidation and cracking processes of endothermic hydrocarbon fuels for hypersonic propulsion[D]. Tianjing: Tianjing University, 2002: 5-20(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540334
|
[7] |
PETLEY D.Thermal management for a mach 5 cruise aircraft using endothermic fuel-aircraft design, systems and operations conference (AIAA)[J].Journal of Aircraft, 1992, 29(3):384-389. doi: 10.2514/3.46173
|
[8] |
EDWARDS T. USAF supercritical hydrocarbon fuels interests[C]//Aerospace Sciences Meeting. Reston: AIAA, 2013.
|
[9] |
曲海杰. 高热安定性碳氢燃料的结构设计[D]. 天津: 天津大学, 2007: 5-20.
QU H J. System design of high thermal-stable hydrocarbon fuel[D]Tianjing: Tianjing University, 2007: 5-20(in Chinese).
|
[10] |
HARI T K, YAAKOB Z, BINITHA N N.Aviation biofuel from renewable resources:Routes, opportunities and challenges[J].Renewable & Sustainable Energy Reviews, 2015, 42:1234-1244. https://ukm.pure.elsevier.com/en/publications/aviation-biofuel-from-renewable-resources-routes-opportunities-an
|
[11] |
BAROUTIAN S, AROUA M K, RAMAN A.Blended aviation biofuel from esterified Jatropha curcas, and waste vegetable oils[J].Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6):911-916. doi: 10.1016/j.jtice.2013.02.007
|
[12] |
COMMODO M, FABRIS I, GROTH C P T, et al.Analysis of aviation fuel thermal oxidative stability by electrospray ionization mass spectrometry(ESI-MS)[J].Energy & Fuels, 2011, 25(5):2142-2150.
|
[13] |
AMARA A B, KAOUBI S, STARCK L.Towards an optimal formulation of alternative jet fuels:Enhanced oxidation and thermal stability by the addition of cyclic molecules[J].Fuel, 2016, 173:98-105. doi: 10.1016/j.fuel.2016.01.040
|
[14] |
OLDANI A. Surrogate modeling of alternative jet fuels for study of autoignition characteristics[D]. Urbana: University of Illionois at Urbana-Champaign, 2014. https://www.ideals.illinois.edu/bitstream/handle/2142/49635/Anna_Oldani.pdf?sequence=1
|
[15] |
SALDANA D A, CRETON B, MOUGIN P, et al.Rational formulation of alternative fuels using QSPR methods:Application to jet fuels[J].Oil & Gas Science & Technology, 2013, 68(4):651-662. https://www.researchgate.net/profile/Nicolas_Jeuland/publication/266210559_Rational_Formulation_of_Alternative_Fuels_using_QSPR_Methods_Application_to_Jet_Fuels/links/562f6c8708aea5dba8d3546d.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
|