CAO Huiling, GAO Sheng, XUE Penget al. Aeroengine fault diagnosis based on multi-classification AdaBoost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1818-1825. doi: 10.13700/j.bh.1001-5965.2017.0774(in Chinese)
Citation: CAO Huiling, GAO Sheng, XUE Penget al. Aeroengine fault diagnosis based on multi-classification AdaBoost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1818-1825. doi: 10.13700/j.bh.1001-5965.2017.0774(in Chinese)

Aeroengine fault diagnosis based on multi-classification AdaBoost

doi: 10.13700/j.bh.1001-5965.2017.0774
Funds:

the Fundamental Research Funds for the Central Universities 3122014D010

More Information
  • Corresponding author: CAO Huiling, E-mail:hlcao@cauc.edu.cn
  • Received Date: 13 Dec 2017
  • Accepted Date: 09 Mar 2018
  • Publish Date: 20 Sep 2018
  • The data mining of aeroengine operational data is an important research for engine fault diagnosis. Due to the limitations of various algorithms, the accuracy of fault classification is difficult to be greatly enhanced with a single algorithm. Using a combination of classifications and diagnosis of multiple classification models, AdaBoost algorithm is a good method to improve the fault recognition accuracy. This paper combined the AdaBoost algorithm and its improved algorithm, and established a multi-classification AdaBoost algorithm. Support vector machine (SVM) was taken as the basic classifier, and a comprehensive diagnostic model was established. Fault identification data in statistics of fingerprint maps were processed with unit vector, ratio coefficient and correlation coefficient, and the training data for fault diagnosis with few effects of fault degrees were obtained. Then the model was constructed. The experimental results illustrate that the AdaBoost based combination algorithm can significantly improve the performance of classifier. With the actual fault cases, it is verified that the established diagnostic model can be well applied to engine fault diagnosis.

     

  • [1]
    WU X, KUMAR V.The top ten algorithms in data mining[M].Boca Raton:CRC Press, 2009:127-149.
    [2]
    曹莹, 苗启广, 刘家辰, 等.AdaBoost算法研究进展与展望[J].自动化学报, 2013, 39(6):745-758.

    CAO Y, MIAO Q G, LIU J C, et al.Advance and prospects of AdaBoost algorithm[J].Acta Automatica Sinica, 2013, 39(6):745-758(in Chinese).
    [3]
    徐启华, 杨瑞.基于AdaBoost算法的故障诊断仿真研究[J].计算机工程与设计, 2005, 26(12):3210-3212. doi: 10.3969/j.issn.1000-7024.2005.12.016

    XU Q H, YANG R.Simulation research on fault diagnosis using AdaBoost algorithm[J].Computer Engineering and Design, 2005, 26(12):3210-3212(in Chinese). doi: 10.3969/j.issn.1000-7024.2005.12.016
    [4]
    夏利民, 戴汝为.基于Boosting模糊分类的滚动轴承故障诊断[J].模式识别与人工智能, 2003, 16(3):323-327. doi: 10.3969/j.issn.1003-6059.2003.03.011

    XIA L M, DAI R W.Fault testing on rolling bearing based on Boosting fuzzy classification[J].Pattern Recognition and Artificial Intelligence, 2003, 16(3):323-327(in Chinese). doi: 10.3969/j.issn.1003-6059.2003.03.011
    [5]
    孙超英, 刘鲁, 刘传武.基于Boosting-SVM算法的航空发动机故障诊断[J].航空动力学报, 2010, 25(11):2584-2588.

    SUN C Y, LIU L, LIU C W.Aero-engine fault diagnosis based on Boosting-SVM[J].Journal of Aerospace Power, 2010, 25(11):2584-2588(in Chinese).
    [6]
    胡金海, 谢寿生, 蔡开龙, 等.Diverse AdaBoost-SVM分类方法及其在航空发动机故障诊断中的应用[J].航空学报, 2007, 28(5):1085-1090. doi: 10.3321/j.issn:1000-6893.2007.05.010

    HU J H, XIE S S, CAI K L, et al.Classification method of diverse AdaBoost-SVM and its application to fault diagnosis of aero-engine[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1085-1090(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.05.010
    [7]
    胡金海, 骆广琦, 李应红, 等.一种基于指数损失函数的多类分类AdaBoost算法及其应用[J].航空学报, 2008, 29(4):811-816. doi: 10.3321/j.issn:1000-6893.2008.04.007

    HU J H, LUO G Q, LI Y H, et al.An AdaBoost algorithm for multi-class classification based on exponential loss function and its application[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(4):811-816(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.007
    [8]
    KEARNS M, VALIANT L.Cryptographic limitations on learning Boolean formulae and finite automata[J].Journal of the ACM, 1994, 41(1):67-95. doi: 10.1145/174644.174647
    [9]
    FREUND Y, SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to Boosting[J].Journal of Computer and System Sciences, 1997, 55(1):119-139. doi: 10.1006/jcss.1997.1504
    [10]
    FREUND Y, SCHAPIRE R E.Experiments with a new Boosting algorithm[C]//Proceedings of the 13th Conference on Machine Learning, 1996: 148-156.
    [11]
    李斌, 王紫石, 汪卫, 等.AdaBoost算法的一种改进方法[J].小型微型计算机系统, 2004, 25(5):869-871. doi: 10.3969/j.issn.1000-1220.2004.05.020

    LI B, WANG Z S, WANG W, et al.Enhancing method for AdaBoost[J].Mini-Micro Systems, 2004, 25(5):869-871(in Chinese). doi: 10.3969/j.issn.1000-1220.2004.05.020
    [12]
    廖红文, 周德龙.AdaBoost及其改进算法综述[J].计算机系统应用, 2012, 21(5):240-244.

    LIAO H W, ZHOU D L.Review of AdaBoost and its improvement[J].Computer Systems & Applications, 2012, 21(5):240-244(in Chinese).
    [13]
    ZHU J, ZOU H, ROSSET S, et al.Multi-class AdaBoost[J].Statistics and Its Interface, 2009, 2(3):349-360. doi: 10.4310/SII.2009.v2.n3.a8
    [14]
    李应红, 尉询楷.航空发动机的智能诊断、建模与预测方法[M].北京:科学出版社, 2013:82-85.

    LI Y H, WEI X K.The methods of aero-engine's modeling, intelligent fault diagnosis and prognosis[M].Beijing:Science Press, 2013:82-85(in Chinese).
    [15]
    FRIEDMAN J, HASTIE T, TIBSHIRANI R.Additive logistic regression:A statistical view of boosting[J].Annals of Statistics, 2000, 28(2):337-407. doi: 10.1214-aos-1016218223/
    [16]
    张卓.基于SVM多分类的PW4000故障诊断研究[D].天津: 中国民航大学, 2015: 42-49.

    ZHANG Z.Research on fault diagnosis of PW4000 based on SVM multi-classification[D].Tianjin: Civil Aviation University of China, 2015: 42-49(in Chinese).
    [17]
    杨新武, 马壮, 袁顺.基于弱分类器调整的多分类AdaBoost算法[J].电子与信息学报, 2016, 38(2):373-380.

    YANG X W, MA Z, YUAN S.Multi-class AdaBoost algorithm based on the adjusted weak classifier[J].Journal of Electronics & Information Technology, 2016, 38(2):373-380(in Chinese).
    [18]
    曹惠玲, 庞思凯, 薛鹏, 等.基于双发差异的航空发动机故障诊断方法研究[J].中国民航大学学报, 2014, 32(3):41-44. doi: 10.3969/j.issn.1674-5590.2014.03.010

    CAO H L, PANG S K, XUE P, et al.Research of aero-engine fault diagnosis method based on monitoring of twin differences[J].Journal of Civil Aviation University of China, 2014, 32(3):41-44(in Chinese). doi: 10.3969/j.issn.1674-5590.2014.03.010
  • Relative Articles

    [1]LEI C L,JIAO M X,FAN G F,et al. Fault diagnosis method of rolling bearings based on SSA-IWT-EMD[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1152-1162 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0174.
    [2]WANG J H,LIU R,CAO J. Unlabeled data fault diagnosis method based on multi-domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1185-1194 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0166.
    [3]GUO J F,TAN B H,WANG Z M. Fault diagnosis method of rolling bearing based on MDAM-GhostCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1172-1184 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0224.
    [4]ZHAO H L,YANG J Q. Aero-engine fault diagnosis based on fusion convolutional Transformer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1117-1126 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0206.
    [5]MA X,XU S,SHANG P C,et al. Fault diagnosis of gearbox under open set and cross working condition based on transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1753-1760 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0719.
    [6]WANG J H,TANG G D,CAO J,et al. Fault diagnosis method of BN ball mill rolling bearing based on AESL-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1138-1146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0428.
    [7]LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0441.
    [8]TIAN Yu, LI Ruiying. An improved network two-terminal connection reliability algorithm based on state vectors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0483
    [9]JIAO M X,LEI C L,MA S Z,et al. Fault diagnosis method of small sample rolling bearings under variable working conditions based on MTF-SPCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3696-3708 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0927.
    [10]CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0631.
    [11]KE Y,LYU Z W,ZHOU W L,et al. Tightly-coupled GNSS/INS spoofing detection algorithm for LS-SVM and robust estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):299-307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0231.
    [12]LI Bowen, LEI Xiaoyong. Flight task recognition and action segmentation based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0635
    [13]GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213.
    [14]NIE X H,JIN L. Application of kernel principal component analysis in autonomous fault diagnosis for spacecraft flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2119-2128 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0582.
    [15]ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376.
    [16]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [17]WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0581.
    [18]WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0069.
    [19]WANG P,LIU C H,ZHANG D N. Automatic modulation recognition method based on improved weight AdaBoost.M2 algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2089-2098 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0577.
    [20]LIU Jiufu, ZHANG Xinzhe, WANG Hengyu, TOMAS DIAS A.M., WANG Zhisheng, YANG Zhong. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134. doi: 10.13700/j.bh.1001-5965.2021.0010
  • Cited by

    Periodical cited type(17)

    1. 吴超,陈磊,刘渊,周绮凤,王奕首. 基于特征优化和支持向量机的航空发动机气路故障诊断. 航空发动机. 2024(04): 30-37 .
    2. 樊智勇,王振良,刘哲旭. 基于XGBoost的民航飞机发动机性能参数预测模型. 计算机测量与控制. 2023(06): 46-52 .
    3. 黄子扬,周凌柯. 基于K-means Bayes和AdaBoost-SVM的故障分类. 计算机系统应用. 2022(07): 239-246 .
    4. 孔祥兴,刘凯伟,莫李平,王奕首,卿新林. 基于特征增维和近邻成分分析的民航发动机故障分类方法. 航空发动机. 2022(05): 40-44 .
    5. 曹惠玲,成宝荣. 基于SelBagging算法的CFM56-7B发动机故障诊断. 中国民航大学学报. 2022(06): 18-23 .
    6. 尚前明,刘治江,曹玉佩,尹文龙. 基于改进AdaBoost算法的柴油机故障诊断研究. 武汉理工大学学报(交通科学与工程版). 2021(02): 264-269 .
    7. 车畅畅,王华伟,倪晓梅,蔺瑞管. 基于深度残差收缩网络的滚动轴承故障诊断. 北京航空航天大学学报. 2021(07): 1399-1406 . 本站查看
    8. 陈晓飞,贾勇,秦健勇. 基于数据挖掘的发动机频率测试系统设计. 计算机测量与控制. 2021(07): 26-30 .
    9. 张林. 基于粒子群算法的柴油机故障诊断研究. 商洛学院学报. 2021(04): 10-14 .
    10. 辛阔,王建国,张文兴. 基于深度Q学习策略的旋转机械故障诊断方法研究. 机电工程. 2021(10): 1261-1268 .
    11. 辜振谱,刘晓波,韩子东,洪连环. 基于改进密度峰值聚类的航空发动机故障诊断. 计算机集成制造系统. 2020(05): 1211-1217 .
    12. 庞梦洋,索中英,郑万泽,徐宇恒,包壮壮,黄林. 基于RS-CART决策树的航空发动机小样本故障诊断. 航空动力学报. 2020(07): 1559-1568 .
    13. 刘紫阳,陶佩,郑韩飞,李丛萱. 一种新的基于工况区分和轨迹相似性的RUL预测方法. 电子测量技术. 2020(13): 31-36 .
    14. 曹惠玲,王冉. 基于滑动时窗策略自适应优化支持向量机的航空发动机性能参数在线预测. 推进技术. 2020(08): 1887-1894 .
    15. 刘宇韬,盛文娟. 基于AdaBoost-LSSVM的纤维复合材料损伤识别. 中国测试. 2020(09): 148-153 .
    16. 樊帅,唐群先. 基于AdaBoost-SAMME的风力发电机组变桨异常识别系统. 电力系统保护与控制. 2020(21): 31-40 .
    17. 程珩,励文艳,权龙,赵立红,关澈,韩露. 基于VMD-MDE和ELM的柱塞泵微弱故障诊断. 振动.测试与诊断. 2020(04): 635-642+818 .

    Other cited types(27)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views(950) PDF downloads(351) Cited by(44)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return