Volume 45 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
QIAN Huaming, WANG Di, WU Yonghui, et al. Filtering algorithm of NFOV star sensor measurement delay[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 234-242. doi: 10.13700/j.bh.1001-5965.2018.0279(in Chinese)
Citation: QIAN Huaming, WANG Di, WU Yonghui, et al. Filtering algorithm of NFOV star sensor measurement delay[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 234-242. doi: 10.13700/j.bh.1001-5965.2018.0279(in Chinese)

Filtering algorithm of NFOV star sensor measurement delay

doi: 10.13700/j.bh.1001-5965.2018.0279
Funds:

National Natural Science Foundation of China 61573113

More Information
  • Corresponding author: QIAN Huaming, E-mail:qianhuam@sina.com
  • Received Date: 17 May 2018
  • Accepted Date: 24 Aug 2018
  • Publish Date: 20 Feb 2019
  • Aimed at measurement delay in the narrow field of view (NFOV) star sensor used for attitude estimation, a robust extended Kalman filter (REKF) algorithm is proposed to solve the measurement delay. According to the minimum mean square error criterion, the minimum upper bound of the variance is solved and the filter gain is determined by the minimum upper bound. The designed REKF algorithm can effectively solve the problem of measurement delay and improve the accuracy of attitude estimation. Finally, the simulation results show that the algorithm is superior to the conventional additive robust extended Kalman filter (AEKF), robust finite-horizon filter (RFHF) and robust Kalman filter (RKF) algorithm, which can better solve the problem of measurement delay in nonlinear systems, and the effectiveness of the algorithm is verified.

     

  • loading
  • [1]
    XIONG K, WEI C L, LIU L D.Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties[J].IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2010, 40(2):399-405. doi: 10.1109/TSMCA.2009.2034836
    [2]
    XIONG K, WEI C L, LIU L D.Robust Kalman filtering for discrete-time nonlinear systems with parameter uncertainties[J].Aerospace Science & Technology, 2012, 18(1):15-24. http://www.sciencedirect.com/science/article/pii/S1270963811000708
    [3]
    XIONG K, LIU L D, LIU Y.Robust extended Kalman filtering for nonlinear systems with multiplicative noises[J].Optimal Control Applications & Methods, 2011, 32(1):47-63. doi: 10.1002/oca.928/citedby
    [4]
    REZAEI H, ESFANJANI R M, FARSI M.Robust filtering for uncertain networked systems with randomly delayed and lost measurements[J].IET Signal Processing, 2015, 9(4):320-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa9a615038aae276e7866cef497e25e3
    [5]
    INOUE R S, TERRA M H, CERRI J P.Extended robust Kalman filter for attitude estimation[J].IET Control Theory & Applications, 2016, 10(2):162-172. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220708619/
    [6]
    DONG Z, YOU Z.Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertain-covariance white noises[J].IEEE Signal Processing Letters, 2006, 13(8):493-496. doi: 10.1109/LSP.2006.873148
    [7]
    ZHENG J H, LIU J F.A robust finite-horizon Kalman filter for uncertain discrete time-varying systems with state-delay and missing measurements[J].International Journal of Grid and Distributed Computing, 2016, 9(3):229-242.
    [8]
    WANG F, WANG Z D, LIANG J L, et al.Robust finite-horzion filtering for 2-D systems with randomly varying sensor delays[J].IEEE Transactions on Systems, Man, and Cybernetics:Ssytems, 2018:1-13. http://ieeexplore.ieee.org/document/8260972/
    [9]
    QIN W T, WANG X G, BAI Y L, et al.Arbitrary-step randomly delayed robust filter with application to boost phase tracking[J].Acta Astronautica, 2018, 145:304-318. doi: 10.1016/j.actaastro.2018.01.056
    [10]
    FAN Z, YANG J.A research of gyro/star-sensor integrated attitude determination based on particle filter[C]//Third International Conference on Instrumentation, Measurement, Computer, Communication and Control.Piscataway, NJ: IEEE Press, 2013: 256-261.
    [11]
    REIF K, GVNTHER S, YAZ E, et al.Stochastic stability of the discrete-time extended Kalman filter[J].IEEE Transactions on Automatic Control, 1999, 44(4):714-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07093f2f97280d5338d49a76c357574d
    [12]
    XIONG K, LIU L D, ZHANG H Y.Modified unscented Kalman filtering and its application in autonomous satellite navigation[J].Aerospace Science & Technology, 2009, 13(4):238-246. doi: 10.1016-j.ast.2009.04.001/
    [13]
    WANG S, FANG H, TIAN X.Recursive estimation for nonlinear stochastic systems with multi-step transmission delays, multiple packet dropouts and correlated noises[J].Signal Processing, 2015, 115:164-175. doi: 10.1016/j.sigpro.2015.03.022
    [14]
    黄蔚.CKF及鲁棒滤波在飞行器姿态估计中的应用研究[D].哈尔滨: 哈尔滨工程大学, 2015.

    HUANG W.Application of CKF and robust filter in aircraft attitude estimation[D].Harbin: Harbin Engineering University, 2015(in Chinese).
    [15]
    XIE L, SOH Y C, DE SOUZA C E.Robust Kalman filtering for uncertain discrete-time systems[J].IEEE Transactions on Automatic Control, 1994, 39(6):1310-1314. doi: 10.1109/9.293203
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(619) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return