Wang Fei, Wei Fajie. Expert system on cost control for complex equipment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 490-494. (in Chinese)
Citation: ZHANG Keming, CAI Yuanwen, REN Yuanet al. Space anomaly events detection approach based on generative adversarial nets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1329-1336. doi: 10.13700/j.bh.1001-5965.2018.0682(in Chinese)

Space anomaly events detection approach based on generative adversarial nets

doi: 10.13700/j.bh.1001-5965.2018.0682
Funds:

National Natural Science Foundation of China 51475472

National Natural Science Foundation of China 61803383

National Natural Science Foundation of China 51605489

More Information
  • Corresponding author: RE NYuan, renyuan_823@aliyun.com
  • Received Date: 22 Nov 2018
  • Accepted Date: 16 Feb 2019
  • Publish Date: 20 Jul 2019
  • Anomaly events detection (AED) is quite important in space field for the complex space environment, difficult technology, high risk and strictly safe and reliable requirements. Since there are few space anomaly events samples and they are hard to obtain, it is necessary to carry out targeted AED. In order to prevent space accidents and find anomaly events that may lead to fault as soon as possible, a novel approach for space anomaly events detection based on generative adversarial nets (GAN) is proposed in this paper. Normal event samples are generated by normal GAN, anomaly event samples are generated by anomaly GAN. We proposed a reasonable algorithm to calculate the divergence of Euclidean distance between input events and simulated normal events generated by normal GAN, and Euclidean distance between input events and simulated abnormal events generated by anomaly GAN.As a result, abnormal events is detected accurately. The method is trained and tested using the Mixed National Institute of Standards and Technology (MNIST) database. The test results show that the key technical indexes, such as precision rate and recall rate of comprehensive evaluation index (F1) and precision recall curve (PRC), are at least 31% and 11% higher than the traditional variational autoencoder (VAE) method. In addition, we evaluated the method by collected data in real environment which simulated space audio data. The abnormal event detection performance is very good, which proved that the proposed method could detect anomaly event in real environments.

     

  • [1]
    诸彤宇, 王奇, 高梦丹.离群点挖掘技术在交通事件检测中的应用[J].计算机科学与探索, 2014, 8(1):111-120.

    ZHU T Y, WANG Q, GAO M D.Research on traffic incident detection with outlier mining technology[J].Journal of Frontiers of Computer Science and Technology, 2014, 8(1):111-120(in Chinese).
    [2]
    高小霞, 霍纬纲, 冯兴杰.基于模糊关联分类器的民机超限事件诊断方法[J].北京航空航天大学学报, 2014, 40(10):1366-1371. https://bhxb.buaa.edu.cn/CN/abstract/abstract13046.shtml

    GAO X X, HUO W G, FENG X J.Civil aircraft's exceedance event diagnosis method based on fuzzy associative classifier[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10):1366-1371(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13046.shtml
    [3]
    李康强.基于广义能量算子的复杂时变调制信号分析方法及其在机械故障诊断中的应用研究[D].北京: 北京科技大学, 2018: 39-141.

    LI K Q.Generalized energy operator based complicated time-verying modulation signal analysis method for machinery fault diagnosis[D].Beijing: University of Science and Technology Beijing, 2018: 39-141(in Chinese).
    [4]
    冯英, 武建文, 王承玉, 等.基于振动信号识别的断路器故障诊断研究[J].高压电器, 2017, 53(2):1-7.

    FENG Y, WU J W, WANG C Y, et al.Research of fault diagnosis of circuit breaker based on vibratin signal recognition[J].High Voltage Apparatus, 2017, 53(2):1-7(in Chinese).
    [5]
    李晓峰, 杨春山, 丁树春.基于信息熵的城市隧道实时交通事件检测聚类[J].计算机技术与发展, 2013, 23(10):212-215.

    LI X F, YANG C S, DING S C.Entropy-based city tunnel real-time traffic incident detection clustering[J].Computer Technology and Development, 2013, 23(10):212-215(in Chinese).
    [6]
    张先飞, 郭志刚, 刘嵩, 等.基于触发词指导的自相似度聚类事件检测[J].计算机科学, 2010, 37(3):212-220. doi: 10.3969/j.issn.1002-137X.2010.03.051

    ZHANG X F, GUO Z G, LIU S, et al.Self-similarity clustering event detection based on triggers guidance[J].Computer Science, 2010, 37(3):212-220(in Chinese). doi: 10.3969/j.issn.1002-137X.2010.03.051
    [7]
    BAY S D, SCHWABACHER M.Mining distance-based outliers in near linear time with randomization and a simple pruning rule[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM, 2003: 29-38.
    [8]
    IVERSON D L.Inductive system health monitoring[C]//Proceedings of the International Conference on Artificial Intelligence, ICAI'04.Las Vegas: CSREA Press, 2004: 605-611.
    [9]
    BUDALAKOTI S, SRIVASTAVA A N, OTEY M E.Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety[J].IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2009, 39(1):101-113. doi: 10.1109/TSMCC.2008.2007248
    [10]
    DAS S, MATTHEWS B L, SRIVASTAVA A N, et al.Multiple kernel learning for heterogeneous anomaly detection: Algorithm and aviation safety case study[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM, 2010: 47-56.
    [11]
    SMART E, BROWN D, DENMAN J.Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data[J].Applied Soft Computing, 2012, 12(8):2583-2592. doi: 10.1016/j.asoc.2012.03.059
    [12]
    AN J, CHO S.Variational autoencoder based anomaly detection using reconstruction probability[J].Special Lecture on IE, 2015, 12:1-18.
    [13]
    LIM H, PARK J, LEE K, et al.Rare sound event detection using 1D convolutional recurrent neural networks[C]//Detection and Classification of Acoustic Scenes and Events Workshop 2017, 2017: 1-5.
    [14]
    胡绍林, 黄刘生.航天故障的成因分析与诊断技术[J].控制工程, 2003, 10(4):295-298. doi: 10.3969/j.issn.1671-7848.2003.04.003

    HU S L, HUANG L S.Analysis and diagnosis of faults in spaceflight engineering[J].Control Engineering of China, 2003, 10(4):295-298(in Chinese). doi: 10.3969/j.issn.1671-7848.2003.04.003
    [15]
    谢敏, 楼鑫, 罗芊, 等.航天器故障诊断技术综述及发展趋势[J].软件, 2016, 37(7):70-74. doi: 10.3969/j.issn.1003-6970.2016.07.014

    XIE M, LOU X, LUO Q, et al.Reviewed and developing trend of spacecraft fault diagnosis technology[J].Computer Engineering & Software, 2016, 37(7):70-74(in Chinese). doi: 10.3969/j.issn.1003-6970.2016.07.014
    [16]
    丁彩红, 黄文虎, 姜兴渭, 等.载人航天故障诊断技术的发展及其关键技术分析[J].强度与环境, 1999(2):20-24.

    DING C H, HUANG W H, JIANG X W, et al.The development of spaceflight fault diagnostic techniques and the analysis towards its key skills[J].Structure & Environment Engineering, 1999(2):20-24(in Chinese).
    [17]
    苏振华, 陆文高, 齐晶, 等.基于BP神经网络的卫星故障诊断方法[J].计算机测量与控制, 2015, 24(5):63-65.

    SU Z H, LU W G, QI J, et al.A method of satellite fault diagnosis based on BP neural network[J].Computer Measurement & Control, 2015, 24(5):63-65(in Chinese).
    [18]
    燕飞, 秦世引.基于RBF神经网络和M距离的卫星故障诊断[J].航天控制, 2006, 24(6):61-66. doi: 10.3969/j.issn.1006-3242.2006.06.014

    YAN F, QIN S Y.Fault diagnosis for satellites based on RBF neural network and Mahalanobis distance[J].Aerospace Control, 2006, 24(6):61-66(in Chinese). doi: 10.3969/j.issn.1006-3242.2006.06.014
    [19]
    曾何俊.基于机器学习的卫星故障动态自适应建模关键技术研究[D].成都: 电子科技大学, 2018: 21-76.

    ZENG H J.Research on modeling key technology of machine learning methods for dynamical adaptation of satellite fault[D].Chengdu: University of Electronic Science and Technology of China, 2018: 21-76(in Chinese).
    [20]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//International Conference on Neural Information Processing Systems, 2014: 2672-2680.
    [21]
    SCHLEGL T, SEEBOCK P, WALDSTEIN S M, et al.Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Information Processing in Medical Imaging.Berlin: Springer, 2017: 146-157.
    [22]
    MICHELSANTI D, TAN Z H.Conditional generative adversarial networks for speech enhancement and noise-robust speaker verification[C]//Conference of the International Speech Communication Association 2017, 2017, 8: 2008-2012.
    [23]
    洪洋, 葛振华, 王纪凯, 等.深度卷积对抗生成网络综述[C]//第18届中国系统仿真技术及其应用学术年会, 2017, 5: 279-283.

    HONG Y, GE Z H, WANG J K, et al.An overview of deep convolution confrontation generation network[C]//18th Chinese Conference on System Simulation Technology & Application, 2017, 5: 279-283(in Chinese).
    [24]
    DUMOULIN V, BELGHAZI I, POOLE B, et al.Adversarially learned inference[C]//29th Conference on Neural Information Processing Systems(NIPS 2016), 2016, 6: 1-16.
    [25]
    ZENATI H, FOO C S, LECOUAT B, et al.Efficient gan-based anomaly detection[C]//International Conference on Learning Representations, 2018: 1-7.
    [26]
    YAMASHITA A, HARA T, KANEKO T.Inspection of visible and invisible features of objects with iImage and sound signal processing[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway, NJ: IEEE Press, 2006: 3837-3842.
    [27]
    DONAHUE J, KRÄHENBVHL P, DARRELL T.Adversarial feature learning[C]//International Conference on Learning Representations, 2017, 4: 1-18.
  • Relative Articles

    [1]ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211.
    [2]LIU B D,YU J S,HAN D Y,et al. Complex equipment troubleshooting strategy generation based on Bayesian networks and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1354-1364 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0449.
    [3]DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0571.
    [4]WANG Z K,HUANG X Y,ZHU D L,et al. Learning sparrow search algorithm of hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):286-298 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0195.
    [5]LU G,ZHONG T X,GENG J. A Transformer based deep conditional video compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):442-448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0374.
    [6]HU Jianping, GAO Zhipeng, MOU Yang, XIE Qi. Deep learning-based image watermarking combining attack classification and multi-channel embedding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0552
    [7]ZHANG Lin, SHEN Jia-ying, HU Chuan-lu, ZHU Dong-lin. Learning Harris hawks optimization algorithm with signal-to-noise ratio[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0433
    [8]ZHAO Minghua, HUANG Xuewen, DU Shuangli, LYU Jiahao, ZHI Rui, SHI Cheng. Spatio-temporal separated transform memory networks for video anomaly detection[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0458
    [9]YANG B,WEI X,YU H,et al. Martian terrain feature extraction method based on unsupervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1842-1849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0525.
    [10]LIANG Zhen-feng, XIA Hai-ying, TAN Yu-mei, SONG Shu-xiang. Aerial Image Stitching Algorithm Based on Unsupervised Deep Learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0366
    [11]ZHONG J,LUO C,ZHANG H,et al. Flight data anomaly detection based on correlation parameter selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1738-1745 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0574.
    [12]HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645.
    [13]CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0300.
    [14]LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0455.
    [15]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [16]LIU Meiqin, XU Chenming, YAO Chao, LIN Chunyu, ZHAO Yao. Dual coding unit partition optimization algorithm of HEVC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1383-1389. doi: 10.13700/j.bh.1001-5965.2021.0528
    [17]LIU Hao, YANG Xiaoshan, XU Changsheng. Long-tail image captioning with dynamic semantic memory network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1399-1408. doi: 10.13700/j.bh.1001-5965.2021.0518
    [18]ZHU Mengyuan, CHEN Zhuo, LIU Pengfei, LYU Na. Fog computing-based federated intrusion detection algorithm for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1943-1950. doi: 10.13700/j.bh.1001-5965.2021.0766
    [19]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
    [20]SU Kaiqi, YAN Weiqing, XU Jindong. 3D object detection based on multi-path feature pyramid network for stereo images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1487-1494. doi: 10.13700/j.bh.1001-5965.2021.0525
  • Cited by

    Periodical cited type(7)

    1. 曹梦皓,王静,王鑫鑫. 山区物流配送的无人机三维路径规划问题研究. 物流科技. 2024(21): 33-38 .
    2. 龙翔,韩兰胜,王伟豪. 基于深度卷积神经网络的异常行为快速识别. 火力与指挥控制. 2023(01): 26-32 .
    3. 张鹏,田子都,王浩. 基于改进生成对抗网络的飞参数据异常检测方法. 浙江大学学报(工学版). 2022(10): 1967-1976+1986 .
    4. 孙宇豪,李国通,张鸽. 距离相关系数融合GPR模型的卫星异常检测方法. 北京航空航天大学学报. 2021(04): 844-852 . 本站查看
    5. 范旭,周强,于忠清. 基于生成式对抗卷积自编码器的滚动轴承故障诊断. 工业技术创新. 2021(04): 94-103 .
    6. 蒋俊,张卓君,高明亮,徐立宾,潘金凤,王新越. 一种基于脉线流卷积神经网络的人群异常行为检测算法. 工程科学与技术. 2020(06): 215-222 .
    7. 张克明,蔡远文,任元,宋志慧. 基于生成对抗网络的稀有音频事件检测研究. 信息工程大学学报. 2019(05): 542-546 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views(1152) PDF downloads(641) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return