Civil aircraft's exceedance event diagnosis method based on fuzzy associative classifier
-
摘要: 现有的民用飞机超限事件智能诊断模型大多属于“黑盒”模型,不利于分析超限事件发生的原因.为此提出了一种基于模糊关联分类器(FAC,Fuzzy Associative Classifier)的民用飞机超限事件诊断方法.该方法抽取发生超限事件时对应的QAR(Quick Access Recorder)参数快照取值,采用模糊C均值(FCM,Fuzzy C-Means)聚类算法对抽取的QAR参数取值模糊预处理,然后基于Apriori算法生成模糊关联分类规则库,并由遗传算法对其进行裁剪,结合模糊分类推理方法形成FAC.采用B737-800实际样本数据进行了验证.实验结果表明,所提出的FAC能有效诊断超限事件,FAC识别超限事件的错误率与最小二乘支持向量机(LS-SVM,Least Squares Support Vector Machine)模型相当,但其解释性方面优于LS-SVM.Abstract: Most of current civil aircraft's exceedance event intelligent diagnosis models are "black box" model, which donot contribute to analyze the occurrence of civil aircraft's exceedance event. In order to overcome these shortcomings, a civil aircraft's exceedance event diagnosis method based on fuzzy associative classifier (FAC) was proposed. First, quick access recorder's (QAR's) parameters value when exceedance event occured was extracted.Fuzzy C-means (FCM) cluster algorithm was adopted to preprocess extracted QAR's parameters value. Then, the library of fuzzy associative classification rule (FACR) was generated by Apriori algorithm.Genetic algorithm was used to prune the library of FACR.Finally,fuzzy classification reasoning method was integrated to build FAC. The FAC was verified with sample data generated by B737-800. Experiment results show that the FAC can diagnose exceedance event effectively, and its classification error rate is equivalent to least squares support vector machine (LS-SVM), but its interpretability is superior to LS-SVM.
-
[1] Bay S D, Schwabacher M.Mining distance-based outliers in near linear time with randomization and a simple pruning rule[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2003:29-38 [2] Iverson D L. Inductive system health monitoring[C]//Proceedings of the International Conference on Artificial Intelligence,IC-AI'04.Las Vegas:CSREA Press,2004:605-611 [3] Budalakoti S, Srivastava A N,Otey M E.Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2009, 39(1): 101-113 [4] Das S,Matthews B L, Srivastava A N,et al.Multiple kernel learning for heterogeneous anomaly detection:algorithm and aviation safety case study[C]//16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,KDD-2010.New York:ACM,2010:47-56 [5] Smart E, Brown D,Denman J.Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data[J].Applied Soft Computing,2012,12(8):2583-2592 [6] 聂磊,黄圣国,舒平,等. 基于支持向量机的民用飞机重着陆智能诊断研究[J].中国安全科学学报,2009,19(7):149-153 Nie Lei,Huang Shengguo,Shu Ping,et al.Intelligent diagnosis for hard landing of aircraft based on SVM[J].China Safety Science Journal,2009,19(7):149-153(in Chinese) [7] 许桂梅,黄圣国. 基于优化支持向量机的飞机重着陆智能诊断[J].计算机测量与控制,2011,19(2):256-259 Xu Guimei,Huang Shengguo.Airplane' s hard landing diagnosis based on optimized support vector machine[J].Computer Measurement & Control,2011,19(2):256-259(in Chinese) [8] 曹海鹏,舒平, 黄圣国.基于神经网络的民用飞机重着陆诊断技术研究[J].计算机测量与控制,2008,16(7):906-908 Cao Haipeng,Shu Ping,Huang Shengguo.Study of aircraft hard landing diagnosis based on neural network[J].Computer Measurement & Control,2008,16(7):906-908(in Chinese) [9] 祁明亮,邵雪焱, 池宏.QAR超限事件飞行操作风险诊断方法[J].北京航空航天大学学报,2011,37(10):1207-1210 Qi Mingliang,Shao Xueyan,Chi Hong.Flight operations risk diagnosis method on quick access record exceedance[J].Journal of Beijing University of Aeronautics and Astronautics,2011, 37(10): 1207-1210(in Chinese) [10] 董杰,韩敏. 基于自适应区间划分的模糊关联分类[J].系统仿真学报,2009,21(9):2675-2678 Dong Jie,Han Min.Fuzzy associative classification based on adaptive interval partition[J].Journal of System Simulation,2009,21(9):2675-2678(in Chinese) [11] 董杰,沈国杰. 一种基于模糊关联分类的遥感图像分类方法[J].计算机研究与发展,2012,49(7):1500-1506 Dong Jie,Shen Guojie.Remote sensing image classification based on fuzzy associative classification[J].Journal of Computer Research and Development,2012,49(7):1500-1506(in Chinese) [12] 霍纬纲,邵秀丽. 一种基于多目标进化算法的模糊关联分类方法[J].计算机研究与发展,2011,48(4):567-575 Huo Weigang,Shao Xiuli.A fuzzy associative classification method based on multi-objective evolutionary algorithm[J].Journal of Computer Research and Development,2011,48(4):567-575(in Chinese) [13] Alcalá-Fdez J, Alcalá R,Herrera F.A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning[J].IEEE Transactions on Fuzzy Systems,2011,19(5):857-872 [14] 霍纬纲,高小霞. 一种适用于多类不平衡数据集的模糊关联分类方法[J].控制与决策,2012,27(12):1833-1838 Huo Weigang,Gao Xiaoxia.A fuzzy associative classification method for multi-class imbalanced dataset[J].Control & Decision,2012,27(12):1833-1838(in Chinese) [15] Pach F P, Gyenesei A,Abonyi J.Compact fuzzy association rule-based classifier[J].Expert Systems with Application,2008, 34(4): 2406-2416
点击查看大图
计量
- 文章访问数: 1207
- HTML全文浏览量: 219
- PDF下载量: 601
- 被引次数: 0